
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38

 28

Generating Test Data for Software Structural Testing using
Particle Swarm Optimization

Dinh Ngoc Thi*

VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Abstract

Search-based test data generation is a very popular domain in the field of automatic test data generation.
However, existing search-based test data generators suffer fromsome problems. By combining static program
analysis and search-based testing, our proposed approach overcomesone of these problems. Considering the
automatic ability and the path coverage as the test adequacycriterion, this paper proposes using Particle Swarm
Optimization, an alternative search technique, for automating the generation of test data for evolutionary
structural testing. Experimental results demonstrate that our test data generator can generate suitable test data
with higher path coverage than the previous one.

Received 26 Jun 2017; Revised 28 Nov 2017; Accepted 20 Dec 2017

Keywords:Automatic test data generation, search-based software testing, Particle Swarm Optimization.

1. Introduction*

Software is amandatory part of today's life,
and has become more and more important in
current information society. However, its
failure may lead to significanteconomic loss or
threat to life safety. As a consequence, software
qualityhas become a top concern today. Among
the methods of software quality assurance,
software testing has been proven as one of the
effective approachesto ensure and improve
software quality over the past threedecades.
However, as most of the software testing is
being done manually, the workforce and cost
required are accordingly high [1]. In general,
about 50 percent of workforce and cost in the
software development process is spent on
software testing [2]. Considering those reasons,
automated software testing has been evaluated

* E-mail.: dinhngocthi@gmail.com
 https://doi.org/10.25073/2588-1086/vnucsce.165

as an efficient and necessary method in order to
reduce those efforts and costs.

Automated structural test data generation is
becoming the research topic attracting much
interest in automated software testingbecause it
enhances the efficiency while reducing
considerably costs of software testing. In our
paper, we will focus on path coverage test data
generation, considering that almost all structural
test data generation problems can be transformed
to the path coverage test datageneration one.
Moreover, Kernighan and Plauger [3] also pointed
out that path coverage test data generation can
find out more than 65 percent of bugs in the given
program under test (PUT).

Although path coverage test data generation
is the major unsolved problem [20], various
approaches have been proposed by researchers.
These approaches can be classified into two
types: constraint-based test data generation
(CBTDG) or search-based test data generation
(SBTDG).

D.N. Thi / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38 29

Symbolic execution (SE) is the state-of-the-
art of CBTDG approaches [21]. Even though
there have been significant achievements, SE
still faces difficulties in handling infinite loops,
array, procedure calls and pointer references in
each PUT [22].

There are also random testing, local search
[10], and evolutionary methods [23, 24, 25] in
SBTDG approaches. As the value of input
variables is assigned when a program executes,
problems encountered in CBTDG approaches
can be avoided in SBTDG.

Being an automated searching method in a
predefined space, genetic algorithm (GA) was
applied to test data generation since 1992 [26].
Micheal et al [22], Levin and Yehudai [25],
Joachim et al [27] indicated that GA
outperforms other SBTDG methods e.g. local
search or random testing.However eventhough
they can generate test data with appropriate
fault-prone ability [4, 5], they fail to produce
them quickly due to their slowly evolutionary
speed. Recently, as a swarm intelligence
technique, Particle Swarm Optimization (PSO)
[6, 7, 8] has become a hot research topic in the
area of intelligent computing. Its significant
feature is its simplicity and fast convergence
speed.

Even so, there are still certain limitations in
current research on PSO usage in test data
generation. For example, consider one PUT
which was used in Mao’s paper [9] as below:

int getDayNum(int year, int month) {
 int maxDay=0;
 if(month≥1 && month≤12){
 //bch1: branch 1
 if(month=2){ //bch2: branch 2
 if(year%400=0||
 (year%4=0&&year%100=0))
 //bch3: branch 3
 maxDay=29;
 else //bch4: branch 4
 maxDay=28;
 }
 else if(month=4||month=6||
 month=9||month=11)
 //bch5: branch 5

 maxDay=30;
 else //bch6: branch 6
 maxDay=31;
 }
 else //bch7: branch 7
 maxDay=-1;
 return maxDay;
}
Regarding this PUT, Mao [9] used PSO to

generate test data through building the one and
only fitness function which was the
combination of Korel formula [10] and the
branch weights. This proposal has two
weaknesses: the branch weight function is
entirely performed manually and some PUTs
are not able to generate test data to cover all test
paths. To overcome these weaknesses, we still
use PSO to generate test data for the given
PUT. However, unlike Mao, our approach is to
assign one fitness function for each test path.
Then we will use simultaneous multithreading
of PSO to simultaneously find the solution
corresponding to this fitness function, which is
also the one able to generate test data for this
test path.

The rest of this paper is organized as
follows: Section 2 gives some theoretical
backgroundon fitness function and particle
swarm optimization algorithm. Section 3
summarizes some related works, and Section 4
presents the proposed approach in detail.
Section 5 shows the experimental results and
discussions. Section 6 concludes the paper.

2. Background

This section describes the theoretical
background being used in our proposed
approach.

2.1. Fitness function

When using PSO, a test path coverage test
data generation is transformed into an
optimization problem. To cover a test path
during execution, we must find appropriate
values for the input variables which satisfy
related branch predicates. The usual way is to

D.N. Thi / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38

30

use Korel’s branch distance function [10]. As a
result, generating test data for a desired branch
is transformed into searching input values
which optimizes the return value of its Korel
function. Table 1 gives some common formulas
which are used in branch distance functions. To
generate test data for a desired path P, we
define a fitness function F(P) as the total values
of all related branch distance functions. For
these reasons, generating path coverage test
data can be converted into searching input
values which can minimize the return value of
function F(P).

Table 1. Korel’s branch functions for severalkinds of
branch predicates

Relational
predicate

Branch distance function f(bchi)

Boolean if true then 0 else k
¬a negation is propagated over a

a = b if abs(a – b)= 0 then 0 else abs(a −
b)+ k

a ≠ b if abs(a − b)≠0 then 0 else k
a<b if a − b <0 then 0 else

abs(a − b)+ k
a ≤ b if a − b ≤ 0 then 0 else

abs(a − b)+ k
a>b if b − a >0 then 0 else

abs(b − a)+ k
a ≥ b if b − a ≥ 0 then 0 else

abs(b − a)+ k
a and b f (a)+ f(b)
a or b min(f(a), f(b))

Similar to Mao [9], we also set up the
punishment factor k = 0.1. Basing on this
formula, we will develop a function calculating
values at branch predication, which is will be
explained in the next part.

2.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) was
first introduced in 1995 by Kennedy and
Eberhart [11], and is now widely applied in
optimization problems. Compared to other
optimal search algorithms such as GA or SA,
PSO has the strength of faster convergent speed
and easier coding. PSO is initialized with a
group of random particles (initial solutions) and

then it searches for optima by updating
generations. In every iteration, each particle is
updated by the following two "best" values. The
first one is the best solution (fitness) achieved
so far (the fitness value is also stored). This
value is called pbest. Another "best" value
tracked by the particle swarm optimizer is the
best value, obtained so far by any particle in the
population. This best value is a global best and
called gbest.

After finding the two best values, the
particle updates its velocity and positions with
the following equation (1) and (2).

�[] = �[] + �1 × ����() × (�����[] −
	�������[]) + �2 × ����() × (�����[] −
	�������[])(1)

�������[] = �������[] + �[](2)
v[] is the particle velocity, persent[] is the

current particle (currentsolution). pbest[] and
gbest[] are defined as stated before. rand() is a
random number between (0,1). c1, c2 are
learning factors, usually c1 = c2 = 2.

The PSO algorithm is described by pseudo
code as shown below:

Algorithm 1: Particle Swarm Optimization (PSO)
Input: F: Fitness function
Output: gBest: The best solution
1: for each particle
2: initialize particle
3: end for
4: do
5: for each particle
6: calculate fitness value
7: if the fitness value is better than the
best fitness value (pBest) in history
then
8: set current value as the new pBest
9: end if
10: end for
11: choose the particle with the best fitness
value of all the particles as the gBest
12: for each particle
13: calculate particle velocity according
equation (1)
14: update particle position according
equation (2)
15: end for
16: while maximum iterations or minimum
criteria is not attained

D.N. Thi / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38 31

Particles' velocities on each dimension are
clamped to a maximum velocity Vmax, which is
aninput parameter specified by the user.

3. Related work

From the 1990s, genetic algorithm (GA) has
been adopted to generate test data. Jones et. al.
[13] presented a GA-based branch coverage test
data generator. Their fitness function made use
of weighted Hamming distance tobranch
predicate values. They used unrolled control
flow graph of a test program such that it is
acyclic. Six small programs were used to test
the approach.In recent years, Harman and
McMinn [14] performed empirical study on
GA-based test data generation for large-scale
programs, and validated its effectiveness over
other meta-heuristic search algorithms.

Although GA is a classical search
algorithm, its convergence speed is not very
significant. PSO algorithm, which simulates to
birds flocking around food sources, was
invented by Kennedy and Eberhart [11] in
1995, and was originally just an algorithm used
for optimization problems. However with the
advantages of faster convergence speed and
easier constructionthan other optimization
algorithms, it was promptly adopted as a meta-
heuristic search algorithm in the automatic test
data generation problem.

Automatic test data generation literature
using PSO started with Windisch et al. [6] in
2007. They improved the PSO
intocomprehensive learning particle swarm
optimization (CL-PSO) to generate structural
test data, but some experiments proved that the
convergence speed of CL-PSO was perhaps
worse than the basic PSO.

Jia et al. [8] created an automatic test data
generating tool named particle swarm
optimization data generation tool (PSODGT).
The PSODGT is characterized by two features.
First, the PSODGT adopts the condition-
decision coverage as the criterion of software
testing, aiming to build an efficient test data set
that covers all conditions. Second, the

PSODGT uses a particle swarm optimization
(PSO) approach to generate test data set. In
addition, a new position initialization technique
is developed for PSO. Instead of initializing the
test data randomly, the proposed technique uses
the previously-found test data which can reach
the target condition as the initial positions so
that the search speed of PSODGT can be further
accelerated. The PSODGT is tested on four
practical programs.

Khushboo et al. [15] described the
application of the discrete quantum
particleswarm optimization (QPSO) to the
problem of automated test data
generation.Thediscrete quantum particle swarm
optimization algorithm is proposed on the basis
of the conceptof quantum computing. They had
studied the role of the critical QPSO parameters
on test data generation performance and based
on observationsan adaptive version (AQPSO)
had been designed. Its performance
comparedwith QPSO. They used the branch
coverage as their test adequacy criteria.

Tiwari et al. [16] had applied a variant of
PSO in the creation of new test data
formodified code in regression testing. The
experimental resultsdemonstrated that this
method could cover more code in lessnumber of
iterations than the original PSO algorithm.

Zhu et al. [17] put forward an improved
algorithm (APSO) and applied it to
automatictest data generation, in which inertia
weight was adjusted accordingto the particle
fitness. The results showed that APSO had
betterperformance than basic PSO.

Dahiya et al. [18] proposed a PSO-
basedhybrid testing technique and solved many
of the structural testingproblems such as
dynamic variables, input dependent array
index,abstract function calls, infeasible paths
and loop handling.

Singla et al. [19] presented a technique on
the basis of a combination ofgenetic algorithm
and particle swarm algorithm. It is used
togenerate automatic test data for data flow
coverage by usingdominance concept between
two nodes, which is compared toboth GA and

D.N. Thi / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38

32

PSO for generation of automatic test cases
todemonstrate its superiority.

Mao [9] and Zhang et al. [7] had the same
approach, in which they did not execute any
PSO improvement but only built a fitness
function by combining the branch distance
functions for branch predicates and the branch
weights of a PUT, then applied PSO to find the
solution for this fitness function. The experiment
result with 1 benchmark having 8 programs under
test proved that PSO algorithm was more
effective than GA in generating test data.
However, there remained a weakness that the
calculation of branch weight for a PUT was still

entirely manual work, which reduced the
automatic nature of the proposal. In this paper, our
proposal can overcome this limitation while being
able to assure the efficiency of a
PSO-based automatic test data generation method.

4. Proposed approach

Our proposed approach can be divided into
two separate parts: performing static analysis
and applying simultaneous multithreading of
PSO to generate test data. This approach is
presented in the Figure 1 below.

K

Figure 1. The basic steps for PSO-based test data generation.

4.1. Perform statistical analysis to find out all
test paths

At first, we perform the statistical analysis
to find all test paths of the given PUT. We call
static analysis because of not having to execute
the program, we can still generate control
flowgraph (CFG) from the given program, and
then traverse this CFG to find out all test
paths.It can be done through the following two
small steps:

1) Control flow graph generation: Test data
generated from source code directly is
morecomplicated and difficult than from
control flow graph (CFG). CFG is a directed
graph visualizing logic structures of program
[12] and is defined as follow:

Definition1(CFG).Given a program, a
corresponding CFG is defined as a pair G =(V,
E), where V ={v0, v1,…vn} is a set of vertices
representing statements, E ={(vi, vj)|vi, vj∈ V}⊂
V× V is a set of edges. Each edge (vi, vj)
implies the statement corresponding to vj is
executed after vi.

This paper uses the CFG generation
algorithm from a given program which was
presented in [28].Before performing this
algorithm, output graph is initialized as a global
variable and contains only one vertex
representing for the given program P.

Algorithm 2: GenerateCFG
Input : P : given program
Output: graph: CFG
1: B = a set of blocks by dividing P
2: G = a graph by linking all blocks in B to
each other
3: update graph by replacing P with G
4:ifG contains return/break/continue
statements then
5: update the destination of
return/break/continue pointers in the graph
6: end if
7: for each block M in B do
8: if block M can be divided into smaller
blocks then
9: GenerateCFG(M)
10: end if
11: end for

D.N. Thi / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38 33

Apply this GenerateCFG algorithm to the
above mentioned PUT getDayNum, we will get a
CFG which has 5 test paths (presented by
decision nodes) as Figure 2 following.

2) Test paths generation:In order to
generate test data, a set of feasible test paths is
found by traversing the given CFG. Path and
test path are defined as follows:

Definition 2 (Path).Given a CFG G = (V,
E), a path is a sequence of vertices {v0, v1,..., vk

|(vi, vi+1)∈ E, 0< k < n}, where n is the number
of vertices.

Definition 3 (Test path).Given a CFG G =
(V, E), a test path is a path {v0, v1,..., vk |(vi,
vi+1)∈ E}, where v0 and vi+1 are corresponding
to the start vertex and end vertex of the CFG.

This research also uses CFG traverse
algorithm [28] to obtain feasible test paths from
a CFG as below:

Figure 2. CFG of PUT getDayNum.

Algorithm 3: TraverseCFG
Input: v: the initial vertex of the CFG
depth: the maximum number of
iterations for a loop
path: a global variable used to store a
discovered test path
Output: P: a set of feasible test paths
1: ifv = NULL or v is the end vertex then
2: add path to P
3: else if the number occurrences of v in
path ≤ depththen
4: add v to the end of path
5: if (v is not a decision node) or (v is
decision node and path is feasible) then

6: for each adjacent vertex u to vdo
7: TraverseCFG(u, depth, path)
8: end for
9: end if
10: remove the latest vertex added in path
from it
11: end if

In this paper, a test path is represented as a

sequence of pairs of predicate, e.g. (month ≥ 1

&&month ≤ 12) for the first branch, and its

decision (T or F for TRUE or FALSE

respectively). For example, one of the paths in

PUT getDayNum can be written as thesequence

{[(month ≥ 1 &&month ≤ 12), T], [(month = 2),

T], [(year % 400 = 0 ||(year % 4 = 0 &&year

%100 = 0)), F]} which means the TRUE branch

is taken at predicate (month ≥ 1 &&month ≤

12), the TRUE branch at predicate (month = 2),

and the FALSE branch at predicate (year %

400 = 0 ||(year % 4 = 0 &&year % 100 = 0)).

This is the path taken with data that represents

the number of days of February in the not leap

year. Apply this algorithm TraverseCFG to the

CFG of PUT getDayNum, we will get 5 test

paths which are presented as a sequence of pairs

of branch predication and its decisions as in the

Table 2 below:

Table 2. All test paths of PUT getDayNum

PathID Path’s branch predications and their
decisions

path1 [(month ≥ 1 &&month ≤ 12), T], [(month =
2), T],
[(year % 400 = 0 | | (year % 4 = 0 &&year
% 100 = 0)), T]

path2 [(month ≥ 1 &&month ≤ 12), T], [(month =
2), T], [(year % 400 = 0 || (year % 4 = 0
&&year % 100 = 0)), F]

path3 [(month ≥ 1 &&month ≤ 12), T], [(month =
2), F], [(month= 4|| month= 6|| month= 9 ||
month= 11), T]

path4 [(month ≥ 1 &&month ≤ 12), T], [(month
=2), F], [(month= 4|| month= 6|| month= 9 ||
month=11), F]

path5 [(month ≥ 1 &&month ≤ 12), F]

D.N. Thi / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38

34

4.2. Establish fitness function for each test path

From the branch distance calculation
formula in Table 1, we develop the below
function.
fBchDist to calculate the value at each predicate
branch.

Since each test path is represented by
sequence of pairs of branch predication and its
decision, in order to build the fitness function

for the test path, we establish the fitness
function for each branch predication and its
decision. There will be 2 possibilities of
TRUE(T) and FALSE(F) for each branch
predication, so there will be 2 fitness functions
corresponding to those possibilities. Regarding
the calculation formula for the fitness function
of each branch predication, we apply the above
mentioned branch distance calculation
algorithm.

Table 3. Fitness function for each branch predication and its decision of PUT getDayNum

o

Algorithm 4: Branch distance function (fBchDist)

Input: double a, condition type, double b
Output:branch distance value
1: switch (condition type)
2: case “=”:
3: if abs(a − b) = 0 then retrun 0 else
return abs(a − b) + k)
4: case “≠”:
5: if abs(a − b)≠0 then return 0 else
return k

6: case “<”:
7: if a − b <0 then return 0 else return
(abs(a − b) + k)
8: case “≤”:
9: if a − b ≤ 0 then return 0 else return
(abs(a − b) + k)
10: case “>”:
11: if b − a >0 then return 0 else return
(abs(b − a) + k)

12: case “≥”:
13 if b − a ≥ 0 then return 0 else return
(abs(b − a) + k)
14: end switch

Base onthese formulas, forcalculating

fitness value for each branch predication, we
generate the fitness function for each test path
of the PUT getDayNum as below:

Table 4. Fitness functions for each test path
of PUT getDayNum

PathID Test path fitness functions
path1 F1 = f1T + f2T + f3T
path2 F2 = f1T + f2T + f3F
path3 F3 = f1T + f2F + f4T
path4 F4 = f1T + f2F + f4F
path5 F5 = f1F

Decision node Fitness function ID
[(month ≥ 1 &&month≤ 12), T] fBchDist(month, ≥, 1) + fBchDist (month, ≤, 12) f1T
[(month ≥ 1 &&month ≥ 12), F] min(fBchDist(month, <, 1),

fBchDist(month, >, 12))
f1F

[(month = 2), T] fBchDist(month, =, 2) f2T
[(month = 2), F] fBchDist(month, ≠, 2) f2F
[(year % 400 = 0 ||
(year % 4 = 0 && year % 100 = 0)), T]

min(fBchDist(year%400, =, 0),
(fBchDist(year%4, =, 0) +
fBchDist(year%100, =, 0)))

f3T

[(year %400 = 0 ||
(year % 4 = 0 &&
year % 100 = 0)), F]

fBchDist(year %400, ≠, 0) +
min(fBchDist(year %4, ≠, 0),
fBchDist (year %100, ≠, 0))

f3F

[(month= 4 || month= 6 ||
month= 9 || month= 11), T]

min(fBchDist(month, =, 4), fBchDist(month, =, 6),
fBchDist(month, =, 9), fBchDist(month, =, 11))

f4T

[(month= 4 || month= 6 ||
month= 9 || month= 11), F]

fBchDist(month, ≠, 4) + fBchDist(month, ≠, 6) +
fBchDist(month, ≠, 9) + fBchDist(month, ≠, 11)

f4F

D.N. Thi / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38 35

4.3. Apply multithreading of Particle Swarm
Optimization

With each fitness function of each test path,
we use one PSO to find its solution (in this case
the solution means the test data which can cover
the corresponding test path). In order to find the
solution for all fitness functions at the same
time, we perform simultaneous multithreading
of the PSO algorithm by defining PSO it as 1
class extends Thread class of Java as follows:
public class PSOProcess extends Thread

The multithreading of PSO can be executed
through below algorithm:

Algorithm 5: Multithreading of Particle Swarm
Optimization(MPSO)

Input: list of fitness functions
Output:the set of test data that is solution to
cover corresponding test path
1: for each fitness function Fi
2: initialize an object psoi of class
PSOProcess
3: assign a fitness function Fi to object psoi
4: execute object pso: pso.start();
5: end for

The experimental results of the above steps
gave the results that our proposal has generated
test data which covered all test paths of
PUTgetDayNum:

Figure 4. Generated test data for the PUT

getDayNum.

5. Experimental analysis

We compared our experimental result to
Mao’s proposal [9] in 2 criteria: the automatic
ability of test data generation and the coverage
capabilities of each proposal for each PUT of
the given benchmark. Also we show our
approach is better than state-of-the-art
constraint-based test data generator Symbolic
PathFinder [21].

5.1. Automatic ability

When referring to an automatic test data
generation method, the actual coverage of
"automatic" ability is one of the key criteria to
decide the proposal’s effectiveness. Mao [9]
used only 1 fitness to generate test data for all
test paths of a PUT, therefore he had to
combine branch weight for each test path into
the fitness function. The build of a branch
weight function (and also the fitness function)
is purely manual, and for long and complex
PUT, sometimes it is even harder than
generating test data for the test paths, therefore
it affected the efficiency of his proposed
approach.

On the opposite side, taking advantage of
the fast convergence of PSO algorithm, we
propose the solution of using separate fitness
function for each test path. This solution has
clear benefits:

1. As there is no need to build the branch
weight function, the automatic feature of this
proposal will be improved.

2. The fitness functions are automatically
built basing on the pair of branch predication
and its decision of each test path, and these
pairs can be entirely generated automatically
from a PUT with above mentioned algorithm 2
and 3. This obviously advances the automatic
ability in our proposal.

5.2. Path coverage ability

We also confirmed our proposed approach
on the benchmark which is used in Mao’s paper
[9]. We performed in the environment of MS
Windows 7 Ultimate with 32-bits and ran on

D.N. Thi / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38

36

Intel Core i3 with 2.4 GHz and 4 GB memory.
Our proposal was implemented in Java and run
on the platform of JDK 1.8. We compared the
coverage ability of all 8 programs in the
benchmark as Table 5.

Table 5.The benchmark programs used for
experimental analysis

PUT name LOC TPs Args Description
triangleType 31 5 3 Type

classification
for a triangle

calDay 72 11 3 Calculate the
day of the
week

cal 53 18 5 Compute the
days
between two
dates

remainder 49 18 2 Calculate the
remainder of
an integer
division

computeTax 61 11 2 Compute the
federal
personal
income tax

bessj 245 21 2 Bessel Jn
function

printCalendar 187 33 2 Print the
calendar of a
month in
some year

line 92 36 8 Check if two
rectangles
overlap

* LOC: Lines of code TPs: Test pathsArgs:
Input arguments

The two criteria to be compared with Mao’s
result [9] are:

 Success rate (SR): the probability of all
branches which can be covered by the
generated test data. In order to check the actual
result basing on this criterion, we executed
MPSO 1000 times, and calculated the number
of times at which generated test data could
cover all test paths of given PUT. The SR
formula is calculated as follows:

�� =
∑(���	����	���ℎ�	����	�������)

1000

 Average coverage (AC): the average of
the branch coverage achieved by all test inputs
in 1,000 runs. Similar to above, in order to
check the actual result basing on this criterion,
we executed MPSO by 1000 times, and
calculated the average coverage for each run.
AC formula is calculated for each PUT as
follows:

�� =
∑(��������	���	���ℎ	���)

1000

The detailed results of the comparison with
PUT benchmark used by Mao [9] in 2 criteria
are shown in the Table 6.

From Table 6 can be seen that there are 4
PUTs (triangleType,computeTax,
printCalendar, line) which Mao's proposed
approach cannot fully cover, while our method
can. Because each test path is assigned to a PSO,
it ensures that every time the MPSO is run, each
PSO can generate test data which can cover the
test path it is assigned to. Also with the remaining
4 PUTs (calDay, cal, reminder, bessj), our
experiments fully covered all test paths with the
same results of Mao [9].

5.3. Compare to constraint-based test data
generation approaches

In this section we point out our
advancement of the constraint-based test data
generation approaches when generating test
data for the given program that contains native
function calls. We compare to Symbolic
PathFinder (SPF) [21], which is the state-of-
the-art of constraint-based test data generation
approaches. Consider asample Java program as
below:

int foo(double x, double y) {
int ret = 0;
if ((x + y + Math.sin(x + y))
== 10) {
ret = 1; // branch 1
}
return ret;
}

D.N. Thi / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38 37

Due to the limitation of the constraint solver
used in SPF, it cannot solve the condition((x + y

+ Math.sin(x + y)) == 10).Because this condition
contains the native function Math.sin(x + y) of the
Java language, SPFis unable to generate test
data which can cover branch 1.
In contrast, by using search-based test data
generation approach, for the condition((x + y +

Math.sin(x + y)) == 10), we appliedKorel’s
formulain Table 1 to create fitness functionf1T =

abs((x + y + Math.sin(x + y)) - 10). Then using
PSO to generate test data that satisfies this
condition, we got the following result:

Figure 5. Generated test data for the condition which
contains native function.

Table 6. Comparison between Mao's approach and MPSO

Program under test
Success rate (%) Average coverage (%)

Mao[9]’s PSO MPSO Mao[9]’s PSO MPSO
triangleType 99.80 100.0 99.94 100.0
calDay 100.0 100.0 100.0 100.0
cal 100.0 100.0 100.0 100.0
remainder 100.0 100.0 100.0 100.0
computeTax 99.80 100.0 99.98 100.0
bessj 100.0 100.0 100.0 100.0
printCalendar 99.10 100.0 99.72 100.0
line 99.20 100.0 99.86 100.0

6. Conclusion

This paper has introduced and evaluated a
combination static program analysis and PSO
approach for evolutionary structural testing. We
proposed a method which uses a fitness
function for each test path of a PUT, and then
executed those PSOs simultaneously in order to
generate test data to cover test paths of a PUT.
The experimental result proves that our
proposal is more effective than Mao’s [9] test
data generation method using PSO in terms of
both automatic and coverage ability for a PUT.
Our approach also addressed a limitation of
constraint-based test data generation
approaches, which generate test data for
conditions that contain native functions.

As future works, we will continue to extend
our proposal to be applicable to many kinds of
UTs, such as PUTs which contain calls to other
native functions or PUTs that handle string
operations or complex data structures. In
addition, further research is needed to be able to

apply this proposal for programs not only
inacademics but also in industry.

References

[1] B. Antonia, “Software Testing Research:
Achievements, Challenges, Dreams”, Future of
Software Engineering, pp. 85-103. IEEE
Computer Society, Washington (2007).

[2] G. J. Myers, “The Art of Software Testing”, 2nd
edition, John Wiley & Sons Inc (2004).

[3] B. W. Kernighan and P. J. Plauger, “The Elements
of Programming Style”, McGraw-Hill, Inc, New
York (1982).

[4] M. A. Ahmed and I. Hermadi, “GA-based Multiple
Paths Test Data Generator”, Computers &
Operations Research, vol. 35, pp 3107-3124 (2008).

[5] J. Malburg and G. Fraser, “Search-based testing
using constraint-based mutation”, Journal
Software Testing, Verification & Reliability, vol.
24(6), 472-495 (2014).

[6] A.Windisch and S.Wappler, “Applying particle
swarm optimization to software testing”,
Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation
(GECCO’07), pp. 1121–1128 (2007).

D.N. Thi / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38

38

[7] Yanli Zhang, Aiguo Li, "Automatic Generating
All-Path Test Data of a Program Based on PSO",
vol. 04, pp. 189-193, 2009,
doi:10.1109/WCSE.2009.98.

[8] Ya-Hui Jia, Wei-Neng Chen, Jun Zhang, Jing-Jing
Li, “Generating Software Test Data by Particle
Swarm Optimization”, Proceedings of 10th
International Conference, SEAL 2014, Dunedin,
New Zealand, December 15-18, 2014.

[9] C.Mao, “Generating Test Data for Software”, Arabian
Journal for Science and Engineering Structural Testing
Based on Particle Swarm Optimization, vol 39, issue 6,
pp 4593–4607 (June 2014).

[10] B. Korel, “Automated software test data
generation”, IEEE Transactions on Software
Engineering, vol. 16, 870-879 (1990).

[11] J.Kennedy, and R.Eberhart, “Particle swam
optimization”, Proceedings of IEEE International
Conference on Neural Networks (ICNN’95), pp.
1942–1948 (1995)

[12] Robert Gold, “Control flow graph and code
coverage”, Int. J. Appl. Math. Comput. Sci., Vol.
20, No. 4, 2010, pp. 739-749

[13] Bryan F. Jones, Harmen-Hinrich Sthamer, and
D.E. Eyres, “Automatic structural testing using
genetic algorithms”, Software Engineering,
11(5):299–306, September 1996.

[14] M.Harman, P.McMinn, “A theoretical and
empirical study of search-based testing: local,
global, and hybrid search”, IEEE Trans. Softw.
Eng. 36(2), 226–247 (2010)

[15] Agrawal K., Srivastava G, “Towards software test
data generation using discrete quantum particle
swarm optimization”, ISEC, Mysore, India
(February 2010).

[16] S. Tiwari, K.K. Mishra, A.K. Misra, “Test case
generation for modified code using a variant of
particle swarm optimization (PSO) Algorithm
[C]”, Proceedings of the Tenth IEEE International
Conference on Information Technology: New
Generations (ITNG), 2013, pp. 363–368.

[17] X.M. Zhu, X.F. Yang, “Software test data
generation automatically based on improved
adaptive particle swarm optimizer”, Proceedings
of the International Conference on Computational
and Information Sciences, 2010, pp. 1300–1303.

[18] S. Dahiya, J. Chhabra, S. Kumar., “PSO based
pseudo dynamic method for automated test case
generation using interpreter”, Proceedings of the
Second International Conference on Advances in
Swarm intelligence, 2011, pp. 147–156.

[19] S. Singla, D. Kumar, H.M. Rai, P. Singla, “A
hybrid PSO approach to automate test data

generation for data flow coverage with dominance
concepts”, Int. J. Adv. Sci. Technol. 37 (2011).

[20] E. J. Weyuker, “The applicability of program
schema results to programs”, International Journal
of Parallel Programming, vol. 8, 387-403 (1979).

[21] C. S. Pasareanu, W. Visser, D. Bushnell, J.
Geldenhuys, P. Mehlitz, N. Rungta, “Symbolic
PathFinder: Integrating Symbolic Execution with
Model Checking for Java Bytecode Analysis”,
Automated Software Engineering Journal,
Springer (2013).

[22] G. M. Michael, M. Schatz, “Generating software
test data by evolution”, IEEE Transactions on
Software Engineering, vol. 27, 1085-1110 (2001).

[23] J. Wegener, A. Baresel, and H. Sthamer,
“Evolutionary test environment for automatic
structural testing”, Information and Software
Technology, vol. 43, 841-854 (2001).

[24] J. Wegener, B. Kerstin, and P. Hartmut,
“Automatic Test Data Generation For Structural
Testing Of Embedded Software Systems By
Evolutionary Testing”, Genetic and Evolutionary
Computation Conference. Morgan Kaufmann
Publishers Inc. (2002).

[25] S. Levin and A. Yehudai, ” Evolutionary Testing:
A Case Study”, Hardware and Software,
Verification and Testing, 155-165 (2007).

[26] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S.
Katsikas, and K. Karapoulios, “Application of
genetic algorithms to software testing
(Application des algorithmes genetiques au test
des logiciels)”, 5th International Conference on
Software Engineering and its Applications, pp.
625--636. Toulouse, France (1992).

[27] W. Joachim, Andr, Baresel, and S. Harmen,
“Suitability of Evolutionary Algorithms for
Evolutionary Testing”, 26th International
Computer Software and Applications Conference
on Prolonging Software Life: Development and
Redevelopment. IEEE Computer Society,
Washington (2002).

[28] Duc-Anh Nguyen, Pham Ngoc Hung, Viet-Ha
Nguyen, "A method for automated unit testing of
C programs", Proceedings of 2016 3rd National
Foundation for Science and Technology
Development Conference on Information and
Computer Science (NICS), 2016, pp. 17-22k.

