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Abstract 

Search-based test data generation is a very popular domain in the field of automatic test data generation. 
However, existing search-based test data generators suffer fromsome problems. By combining static program 
analysis and search-based testing, our proposed approach overcomesone of these problems. Considering the 
automatic ability and the path coverage as the test adequacycriterion, this paper proposes using Particle Swarm 
Optimization, an alternative search technique, for automating the generation of test data for evolutionary 
structural testing. Experimental results demonstrate that our test data generator can generate suitable test data 
with higher path coverage than the previous one. 
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1. Introduction* 

Software is amandatory part of today's life, 
and has become more and more important in 
current information society. However, its 
failure may lead to significanteconomic loss or 
threat to life safety. As a consequence, software 
qualityhas become a top concern today. Among 
the methods of software quality assurance, 
software testing has been proven as one of the 
effective approachesto ensure and improve 
software quality over the past threedecades. 
However, as most of the software testing is 
being done manually, the workforce and cost 
required are accordingly high [1]. In general, 
about 50 percent of workforce and cost in the 
software development process is spent on 
software testing [2]. Considering those reasons, 
automated software testing has been evaluated 

_______ 
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as an efficient and necessary method in order to 
reduce those efforts and costs. 

Automated structural test data generation is 
becoming the research topic attracting much 
interest in automated software testingbecause it 
enhances the efficiency while reducing 
considerably costs of software testing. In our 
paper, we will focus on path coverage test data 
generation, considering that almost all structural 
test data generation problems can be transformed 
to the path coverage test datageneration one. 
Moreover, Kernighan and Plauger [3] also pointed 
out that path coverage test data generation can 
find out more than 65 percent of bugs in the given 
program under test (PUT). 

Although path coverage test data generation 
is the major unsolved problem [20], various 
approaches have been proposed by researchers. 
These approaches can be classified into two 
types: constraint-based test data generation 
(CBTDG) or search-based test data generation 
(SBTDG). 
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Symbolic execution (SE) is the state-of-the-
art of CBTDG approaches [21]. Even though 
there have been significant achievements, SE 
still faces difficulties in handling infinite loops, 
array, procedure calls and pointer references in 
each PUT [22]. 

There are also random testing, local search 
[10], and evolutionary methods [23, 24, 25] in 
SBTDG approaches. As the value of input 
variables is assigned when a program executes, 
problems encountered in CBTDG approaches 
can be avoided in SBTDG. 

Being an automated searching method in a 
predefined space, genetic algorithm (GA) was 
applied to test data generation since 1992 [26]. 
Micheal et al [22], Levin and Yehudai [25], 
Joachim et al [27] indicated that GA 
outperforms other SBTDG methods e.g. local 
search or random testing.However eventhough 
they can generate test data with appropriate 
fault-prone ability [4, 5], they fail to produce 
them quickly due to their slowly evolutionary 
speed. Recently, as a swarm intelligence 
technique, Particle Swarm Optimization (PSO) 
[6, 7, 8] has become a hot research topic in the 
area of intelligent computing. Its significant 
feature is its simplicity and fast convergence 
speed. 

Even so, there are still certain limitations in 
current research on PSO usage in test data 
generation. For example, consider one PUT 
which was used in Mao’s paper [9] as below: 

int getDayNum(int year, int month) { 
  int maxDay=0; 
  if(month≥1 && month≤12){ 
     //bch1: branch 1 
    if(month=2){ //bch2: branch 2              
      if(year%400=0|| 
        (year%4=0&&year%100=0)) 
        //bch3: branch 3 
        maxDay=29; 
      else //bch4: branch 4 
        maxDay=28; 
    } 
    else if(month=4||month=6|| 
           month=9||month=11) 
      //bch5: branch 5 

      maxDay=30; 
    else //bch6: branch 6 
      maxDay=31; 
  } 
  else //bch7: branch 7 
    maxDay=-1; 
  return maxDay; 
} 
Regarding this PUT, Mao [9] used PSO to 

generate test data through building the one and 
only fitness function which was the 
combination of Korel formula [10] and the 
branch weights. This proposal has two 
weaknesses: the branch weight function is 
entirely performed manually and some PUTs 
are not able to generate test data to cover all test 
paths. To overcome these weaknesses, we still 
use PSO to generate test data for the given 
PUT. However, unlike Mao, our approach is to 
assign one fitness function for each test path. 
Then we will use simultaneous multithreading 
of PSO to simultaneously find the solution 
corresponding to this fitness function, which is 
also the one able to generate test data for this 
test path. 

The rest of this paper is organized as 
follows: Section 2 gives some theoretical 
backgroundon fitness function and particle 
swarm optimization algorithm. Section 3 
summarizes some related works, and Section 4 
presents the proposed approach in detail. 
Section 5 shows the experimental results and 
discussions. Section 6 concludes the paper. 

2. Background 

This section describes the theoretical 
background being used in our proposed 
approach. 

2.1. Fitness function 

When using PSO, a test path coverage test 
data generation is transformed into an 
optimization problem. To cover a test path 
during execution, we must find appropriate 
values for the input variables which satisfy 
related branch predicates. The usual way is to 



D.N. Thi / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38 

 

30

use Korel’s branch distance function [10]. As a 
result, generating test data for a desired branch 
is transformed into searching input values 
which optimizes the return value of its Korel 
function. Table 1 gives some common formulas 
which are used in branch distance functions. To 
generate test data for a desired path P, we 
define a fitness function F(P) as the total values 
of all related branch distance functions. For 
these reasons, generating path coverage test 
data can be converted into searching input 
values which can minimize the return value of 
function F(P). 

Table 1. Korel’s branch functions for severalkinds of 
branch predicates 

Relational 
predicate 

Branch distance function f(bchi) 

Boolean if true then 0 else k 
¬a negation is propagated over a 

a = b if abs(a – b)= 0 then 0 else abs(a − 
b)+ k 

a ≠ b if abs(a − b)≠0 then 0 else k 
a<b if a − b <0 then 0 else  

abs(a − b)+ k 
a ≤ b if a − b ≤ 0 then 0 else  

abs(a − b)+ k 
a>b if b − a >0 then 0 else  

abs(b − a)+ k 
a ≥ b if b − a ≥ 0 then 0 else  

abs(b − a)+ k 
a and b f (a)+ f(b) 
a or b min(f(a), f(b)) 

Similar to Mao [9], we also set up the 
punishment factor k = 0.1. Basing on this 
formula, we will develop a function calculating 
values at branch predication, which is will be 
explained in the next part. 

2.2. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) was 
first introduced in 1995 by Kennedy and 
Eberhart [11], and is now widely applied in 
optimization problems. Compared to other 
optimal search algorithms such as GA or SA, 
PSO has the strength of faster convergent speed 
and easier coding. PSO is initialized with a 
group of random particles (initial solutions) and 

then it searches for optima by updating 
generations. In every iteration, each particle is 
updated by the following two "best" values. The 
first one is the best solution (fitness) achieved 
so far (the fitness value is also stored). This 
value is called pbest. Another "best" value 
tracked by the particle swarm optimizer is the 
best value, obtained so far by any particle in the 
population. This best value is a global best and 
called gbest.  

After finding the two best values, the 
particle updates its velocity and positions with 
the following equation (1) and (2). 

�[] = �[] + �1 × ����() × (�����[] −
	�������[]) + �2 × ����() × (�����[] −
	�������[])(1) 

�������[] = �������[] + �[](2) 
v[] is the particle velocity, persent[] is the 

current particle (currentsolution). pbest[] and 
gbest[] are defined as stated before. rand() is a 
random number between (0,1). c1, c2 are 
learning factors, usually c1 = c2 = 2.  

The PSO algorithm is described by pseudo 
code as shown below: 

Algorithm 1: Particle Swarm Optimization (PSO) 
Input: F: Fitness function 
Output: gBest: The best solution 
1: for each particle  
2: initialize particle 
3: end for 
4:   do 
5: for each particle  
6: calculate fitness value 
7: if the fitness value is better than the  
best fitness value (pBest) in history  
then 
8: set current value as the new pBest 
9: end if 
10: end for 
11: choose the particle with the best fitness  
value of all the particles as the gBest 
12: for each particle 
13: calculate particle velocity according  
equation (1) 
14: update particle position according  
equation (2) 
15: end for 
16: while maximum iterations or minimum  
criteria is not attained 
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Particles' velocities on each dimension are 
clamped to a maximum velocity Vmax, which is 
aninput parameter specified by the user. 

3. Related work 

From the 1990s, genetic algorithm (GA) has 
been adopted to generate test data. Jones et. al. 
[13] presented a GA-based branch coverage test 
data generator. Their fitness function made use 
of weighted Hamming distance tobranch 
predicate values. They used unrolled control 
flow graph of a test program such that it is 
acyclic. Six small programs were used to test 
the approach.In recent years, Harman and 
McMinn [14] performed empirical study on 
GA-based test data generation for large-scale 
programs, and validated its effectiveness over 
other meta-heuristic search algorithms. 

Although GA is a classical search 
algorithm, its convergence speed is not very 
significant. PSO algorithm, which simulates to 
birds flocking around food sources, was 
invented by Kennedy and Eberhart [11] in 
1995, and was originally just an algorithm used 
for optimization problems. However with the 
advantages of faster convergence speed and 
easier constructionthan other optimization 
algorithms, it was promptly adopted as a meta-
heuristic search algorithm in the automatic test 
data generation problem.  

Automatic test data generation literature 
using PSO started with Windisch et al. [6] in 
2007. They improved the PSO 
intocomprehensive learning particle swarm 
optimization (CL-PSO) to generate structural 
test data, but some experiments proved that the 
convergence speed of CL-PSO was perhaps 
worse than the basic PSO. 

Jia et al. [8] created an automatic test data 
generating tool named particle swarm 
optimization data generation tool (PSODGT). 
The PSODGT is characterized by two features. 
First, the PSODGT adopts the condition-
decision coverage as the criterion of software 
testing, aiming to build an efficient test data set 
that covers all conditions. Second, the 

PSODGT uses a particle swarm optimization 
(PSO) approach to generate test data set.  In 
addition, a new position initialization technique 
is developed for PSO. Instead of initializing the 
test data randomly, the proposed technique uses 
the previously-found test data which can reach 
the target condition as the initial positions so 
that the search speed of PSODGT can be further 
accelerated. The PSODGT is tested on four 
practical programs. 

Khushboo et al. [15] described the 
application of the discrete quantum 
particleswarm optimization (QPSO) to the 
problem of automated test data 
generation.Thediscrete quantum particle swarm 
optimization algorithm is proposed on the basis 
of the conceptof quantum computing. They had 
studied the role of the critical QPSO parameters 
on test data generation performance and based 
on observationsan adaptive version (AQPSO) 
had been designed. Its performance 
comparedwith QPSO. They used the branch 
coverage as their test adequacy criteria. 

Tiwari et al. [16] had applied a variant of 
PSO in the creation of new test data 
formodified code in regression testing. The 
experimental resultsdemonstrated that this 
method could cover more code in lessnumber of 
iterations than the original PSO algorithm. 

Zhu et al. [17] put forward an improved 
algorithm (APSO) and applied it to 
automatictest data generation, in which inertia 
weight was adjusted accordingto the particle 
fitness. The results showed that APSO had 
betterperformance than basic PSO. 

Dahiya et al. [18] proposed a PSO-
basedhybrid testing technique and solved many 
of the structural testingproblems such as 
dynamic variables, input dependent array 
index,abstract function calls, infeasible paths 
and loop handling.  

Singla et al. [19] presented a technique on 
the basis of a combination ofgenetic algorithm 
and particle swarm algorithm. It is used 
togenerate automatic test data for data flow 
coverage by usingdominance concept between 
two nodes, which is compared toboth GA and 
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PSO for generation of automatic test cases 
todemonstrate its superiority. 

Mao [9] and Zhang et al. [7] had the same 
approach, in which they did not execute any 
PSO improvement but only built a fitness 
function by combining the branch distance 
functions for branch predicates and the branch 
weights of a PUT, then applied PSO to find the 
solution for this fitness function. The experiment 
result with 1 benchmark having 8 programs under 
test proved that PSO algorithm was more 
effective than GA in generating test data. 
However, there remained a weakness that the 
calculation of branch weight for a PUT was still 

entirely manual work, which reduced the 
automatic nature of the proposal. In this paper, our 
proposal can overcome this limitation while being 
able to assure the efficiency of a  
PSO-based automatic test data generation method. 

4. Proposed approach 

Our proposed approach can be divided into 
two separate parts: performing static analysis 
and applying simultaneous multithreading of 
PSO to generate test data. This approach is 
presented in the Figure 1 below. 

K 

 

Figure 1. The basic steps for PSO-based test data generation.

4.1. Perform statistical analysis to find out all 
test paths 

At first, we perform the statistical analysis 
to find all test paths of the given PUT. We call 
static analysis because of not having to execute 
the program, we can still generate control 
flowgraph (CFG) from the given program, and 
then traverse this CFG to find out all test 
paths.It can be done through the following two 
small steps: 

1) Control flow graph generation: Test data 
generated from source code directly is 
morecomplicated and difficult than from 
control flow graph (CFG). CFG is a directed 
graph visualizing logic structures of program 
[12] and is defined as follow: 

Definition1(CFG).Given a program, a 
corresponding CFG is defined as a pair G =(V, 
E), where V ={v0, v1,…vn} is a set of vertices 
representing statements, E ={(vi, vj)|vi, vj∈ V}⊂ 
V× V is a set of edges. Each edge (vi, vj) 
implies the statement corresponding to vj is 
executed after vi. 

This paper uses the CFG generation 
algorithm from a given program which was 
presented in [28].Before performing this 
algorithm, output graph is initialized as a global 
variable and contains only one vertex 
representing for the given program P. 

Algorithm 2: GenerateCFG 
Input : P : given program 
Output: graph: CFG 
1:  B = a set of blocks by dividing P 
2:  G = a graph by linking all blocks in B to  
each other 
3:  update graph by replacing P with G 
4:ifG contains return/break/continue 
statements then 
5:   update the destination of  
return/break/continue pointers in the graph 
6:  end if 
7:  for each block M in B do 
8:       if block M can be divided into smaller  
blocks then 
9:            GenerateCFG(M) 
10:     end if 
11: end for 



D.N. Thi / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 28-38 33

Apply this GenerateCFG algorithm to the 
above mentioned PUT getDayNum, we will get a 
CFG which has 5 test paths (presented by 
decision nodes) as Figure 2 following. 

2) Test paths generation:In order to 
generate test data, a set of feasible test paths is 
found by traversing the given CFG. Path and 
test path are defined as follows: 

Definition 2 (Path).Given a CFG G = (V, 
E), a path is a sequence of vertices {v0, v1,..., vk 

|(vi, vi+1)∈ E, 0< k < n}, where n is the number 
of vertices. 

Definition 3 (Test path).Given a CFG G = 
(V, E), a test path is a path {v0, v1,..., vk |(vi, 
vi+1)∈ E}, where v0 and vi+1 are corresponding 
to the start vertex and end vertex of the CFG. 

This research also uses CFG traverse 
algorithm [28] to obtain feasible test paths from 
a CFG as below: 

 

Figure 2. CFG of PUT getDayNum.  

Algorithm 3: TraverseCFG 
Input: v: the initial vertex of the CFG 
depth: the maximum number of  
iterations for a loop  
path: a global variable used to store a  
discovered test path 
Output: P: a set of feasible test paths 
1: ifv = NULL or v is the end vertex then 
2: add path to P 
3: else if the number occurrences of v in  
path ≤ depththen 
4: add v to the end of path 
5: if (v is not a decision node) or (v is  
decision node and path is feasible) then 

6: for each adjacent vertex u to vdo 
7: TraverseCFG(u, depth, path) 
8: end for 
9: end if 
10: remove the latest vertex added in path 
from it 
11: end if 

In this paper, a test path is represented as a 

sequence of pairs of predicate, e.g. (month ≥ 1 

&&month ≤ 12) for the first branch, and its 

decision (T or F for TRUE or FALSE 

respectively). For example, one of the paths in 

PUT getDayNum can be written as thesequence 

{[(month ≥ 1 &&month ≤ 12), T], [(month = 2), 

T], [(year % 400 = 0 ||(year % 4 = 0 &&year 

%100 = 0)), F]} which means the TRUE branch 

is taken at predicate (month ≥ 1 &&month ≤ 

12), the TRUE branch at predicate (month = 2), 

and  the FALSE branch at predicate (year % 

400 = 0 ||(year % 4 = 0 &&year % 100 = 0)). 

This is the path taken with data that represents 

the number of days of February in the not leap 

year. Apply this algorithm TraverseCFG to the 

CFG of PUT getDayNum, we will get 5 test 

paths which are presented as a sequence of pairs 

of branch predication and its decisions as in the 

Table 2 below: 

Table 2. All test paths of PUT getDayNum 

PathID Path’s branch predications and their 
decisions 

path1 [(month ≥ 1 &&month ≤ 12), T], [(month = 
2), T],  
[(year % 400 = 0 | | (year % 4 = 0 &&year 
% 100 = 0)), T] 

path2 [(month ≥ 1 &&month ≤ 12), T], [(month = 
2), T], [(year % 400 = 0 || (year % 4 = 0 
&&year % 100 = 0)), F] 

path3 [(month ≥ 1 &&month ≤ 12), T], [(month = 
2), F], [(month= 4|| month= 6|| month= 9 || 
month= 11), T] 

path4 [(month ≥ 1 &&month ≤ 12), T], [(month 
=2), F], [(month= 4|| month= 6|| month= 9 || 
month=11), F] 

path5 [(month ≥ 1 &&month ≤ 12), F] 
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4.2. Establish fitness function for each test path 

From the branch distance calculation 
formula in Table 1, we develop the below 
function. 
fBchDist to calculate the value at each predicate 
branch. 

Since each test path is represented by 
sequence of pairs of branch predication and its 
decision, in order to build the fitness function 

for the test path, we establish the fitness 
function for each branch predication and its 
decision. There will be 2 possibilities of 
TRUE(T) and FALSE(F) for each branch 
predication, so there will be 2 fitness functions 
corresponding to those possibilities. Regarding 
the calculation formula for the fitness function 
of each branch predication, we apply the above 
mentioned branch distance calculation 
algorithm. 

Table 3. Fitness function for each branch predication and its decision of PUT getDayNum 

 

 

 

 

 

 

 

 

 

 

o 

Algorithm 4: Branch distance function (fBchDist) 

Input:  double a, condition type, double b 
Output:branch distance value  
1:   switch (condition type) 
2:       case “=”:   
3:            if abs(a − b) = 0 then retrun 0 else  
return abs(a − b) + k) 
4:       case “≠”: 
5:            if abs(a − b)≠0 then return 0 else  
return k 
 
6:       case “<”: 
7:             if a − b <0 then return 0 else return  
(abs(a − b) + k) 
8:       case “≤”: 
9:             if a − b ≤ 0 then return 0 else return  
(abs(a − b) + k) 
10:     case “>”: 
11:           if b − a >0 then return 0 else return  
(abs(b − a) + k) 

12:     case “≥”: 
13            if b − a ≥ 0 then return 0 else return  
(abs(b − a) + k) 
14: end switch 

 
Base onthese formulas, forcalculating 

fitness value for each branch predication, we 
generate the fitness function for each test path 
of the PUT getDayNum as below: 

Table 4. Fitness functions for each test path  
of PUT getDayNum 

PathID Test path fitness functions 
path1 F1 = f1T + f2T + f3T 
path2 F2 = f1T + f2T + f3F 
path3 F3 = f1T + f2F + f4T 
path4 F4 = f1T + f2F + f4F 
path5 F5 = f1F 

Decision node Fitness function ID 
[(month ≥ 1 &&month≤ 12), T] fBchDist(month, ≥, 1) + fBchDist (month, ≤, 12)  f1T 
[(month ≥ 1 &&month ≥ 12), F] min(fBchDist(month, <, 1),  

fBchDist(month, >, 12)) 
f1F 

[(month = 2), T] fBchDist(month, =, 2) f2T 
[(month = 2), F] fBchDist(month, ≠, 2) f2F 
[(year % 400 = 0 || 
(year % 4 = 0 && year % 100 = 0)), T] 

min(fBchDist(year%400, =, 0),  
(fBchDist(year%4, =, 0) +  
fBchDist(year%100, =, 0))) 

f3T 

[(year %400 = 0 || 
(year % 4 = 0 && 
year % 100 = 0)), F] 

fBchDist(year %400, ≠, 0) +  
min(fBchDist(year %4, ≠, 0),  
fBchDist (year %100, ≠, 0)) 

f3F 

[(month= 4 || month= 6 || 
month= 9 || month= 11), T] 

min(fBchDist(month, =, 4), fBchDist(month, =, 6), 
fBchDist(month, =, 9), fBchDist(month, =, 11)) 

f4T 

[(month= 4 || month= 6 || 
month= 9 || month= 11), F] 

fBchDist(month, ≠, 4) + fBchDist(month, ≠, 6) + 
fBchDist(month, ≠, 9) + fBchDist(month, ≠, 11) 

f4F 
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4.3. Apply multithreading of Particle Swarm 
Optimization 

With each fitness function of each test path, 
we use one PSO to find its solution (in this case 
the solution means the test data which can cover 
the corresponding test path). In order to find the 
solution for all fitness functions at the same 
time, we perform simultaneous multithreading 
of the PSO algorithm by defining PSO it as 1 
class extends Thread class of Java as follows: 
public class PSOProcess extends Thread 

The multithreading of PSO can be executed 
through below algorithm: 

Algorithm 5: Multithreading of Particle Swarm 
Optimization(MPSO) 

Input:  list of fitness functions 
Output:the set of test data that is solution to  
cover corresponding test path 
1:  for each fitness function Fi 
2:        initialize an object psoi of class  
PSOProcess  
3:   assign a fitness function Fi  to object psoi 
4:        execute object pso: pso.start(); 
5:  end for 

The experimental results of the above steps 
gave the results that our proposal has generated 
test data which covered all test paths of 
PUTgetDayNum: 

 

Figure 4. Generated test data for the PUT 

getDayNum. 

5. Experimental analysis 

We compared our experimental result to 
Mao’s proposal [9] in 2 criteria: the automatic 
ability of test data generation and the coverage 
capabilities of each proposal for each PUT of 
the given benchmark. Also we show our 
approach is better than state-of-the-art 
constraint-based test data generator Symbolic 
PathFinder [21]. 

5.1. Automatic ability 

When referring to an automatic test data 
generation method, the actual coverage of 
"automatic" ability is one of the key criteria to 
decide the proposal’s effectiveness. Mao [9] 
used only 1 fitness to generate test data for all 
test paths of a PUT, therefore he had to 
combine branch weight for each test path into 
the fitness function. The build of a branch 
weight function (and also the fitness function) 
is purely manual, and for long and complex 
PUT, sometimes it is even harder than 
generating test data for the test paths, therefore 
it affected the efficiency of his proposed 
approach. 

On the opposite side, taking advantage of 
the fast convergence of PSO algorithm, we 
propose the solution of using separate fitness 
function for each test path. This solution has 
clear benefits: 

1. As there is no need to build the branch 
weight function, the automatic feature of this 
proposal will be improved. 

2. The fitness functions are automatically 
built basing on the pair of branch predication 
and its decision of each test path, and these 
pairs can be entirely generated automatically 
from a PUT with above mentioned algorithm 2 
and 3. This obviously advances the automatic 
ability in our proposal. 

5.2. Path coverage ability 

We also confirmed our proposed approach 
on the benchmark which is used in Mao’s paper 
[9]. We performed in the environment of MS 
Windows 7 Ultimate with 32-bits and ran on 
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Intel Core i3 with 2.4 GHz and 4 GB memory. 
Our proposal was implemented in Java and run 
on the platform of JDK 1.8. We compared the 
coverage ability of all 8 programs in the 
benchmark as Table 5. 

Table 5.The benchmark programs used for 
experimental analysis 

PUT name LOC TPs Args Description 
triangleType  31 5 3 Type 

classification 
for a triangle 

calDay 72 11 3 Calculate the 
day of the 
week 

cal 53 18 5 Compute the 
days 
between two 
dates 

remainder 49 18 2 Calculate the 
remainder of 
an integer 
division 

computeTax 61 11 2 Compute the 
federal 
personal 
income tax 

bessj 245 21 2 Bessel Jn 
function 

printCalendar 187 33 2 Print the 
calendar of a 
month in 
some year 

line 92 36 8 Check if two 
rectangles 
overlap 

* LOC: Lines of code TPs: Test pathsArgs: 
Input arguments 

The two criteria to be compared with Mao’s 
result [9] are: 

 Success rate (SR): the probability of all 
branches which can be covered by the 
generated test data. In order to check the actual 
result basing on this criterion, we executed 
MPSO 1000 times, and calculated the number 
of times at which generated test data could 
cover all test paths of given PUT. The SR 
formula is calculated as follows: 

�� =
∑(���	����	���ℎ�	����	�������)

1000
 

 Average coverage (AC): the average of 
the branch coverage achieved by all test inputs 
in 1,000 runs. Similar to above, in order to 
check the actual result basing on this criterion, 
we executed MPSO by 1000 times, and 
calculated the average coverage for each run. 
AC formula is calculated for each PUT as 
follows: 

�� =
∑(��������	���	���ℎ	���)

1000
 

The detailed results of the comparison with 
PUT benchmark used by Mao [9] in 2 criteria 
are shown in the Table 6. 

From Table 6 can be seen that there are 4 
PUTs (triangleType,computeTax, 
printCalendar, line) which Mao's proposed 
approach cannot fully cover, while our method 
can. Because each test path is assigned to a PSO, 
it ensures that every time the MPSO is run, each 
PSO can generate test data which can cover the 
test path it is assigned to. Also with the remaining 
4 PUTs (calDay, cal, reminder, bessj), our 
experiments fully covered all test paths with the 
same results of Mao [9]. 

5.3. Compare to constraint-based test data 
generation approaches 

In this section we point out our 
advancement of the constraint-based test data 
generation approaches when generating test 
data for the given program that contains native 
function calls. We compare to Symbolic 
PathFinder (SPF) [21], which is the state-of-
the-art of constraint-based test data generation 
approaches. Consider asample Java program as 
below: 

int foo(double x, double y) { 
int ret = 0; 
if ((x + y + Math.sin(x + y))  
== 10) {              
ret = 1; // branch 1 
} 
return ret; 
} 
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Due to the limitation of the constraint solver 
used in SPF, it cannot solve the condition((x + y 

+ Math.sin(x + y)) == 10).Because this condition 
contains the native function Math.sin(x + y) of the 
Java language, SPFis unable to generate test 
data which can cover branch 1. 
In contrast, by using search-based test data 
generation approach, for the condition((x + y + 

Math.sin(x + y)) == 10), we appliedKorel’s 
formulain Table 1 to create fitness functionf1T = 

abs((x + y + Math.sin(x + y)) - 10). Then using 
PSO to generate test data that satisfies this 
condition, we got the following result: 
 

 

Figure 5. Generated test data for the condition which 
contains native function. 

Table 6. Comparison between Mao's approach and MPSO 

Program under test 
Success rate (%) Average coverage (%) 

Mao[9]’s PSO MPSO Mao[9]’s PSO MPSO 
triangleType  99.80 100.0 99.94 100.0 
calDay 100.0 100.0 100.0 100.0 
cal 100.0 100.0 100.0 100.0 
remainder 100.0 100.0 100.0 100.0 
computeTax  99.80 100.0 99.98 100.0 
bessj 100.0 100.0 100.0 100.0 
printCalendar 99.10 100.0 99.72 100.0 
line 99.20 100.0 99.86 100.0 

 
6. Conclusion 

This paper has introduced and evaluated a 
combination static program analysis and PSO 
approach for evolutionary structural testing. We 
proposed a method which uses a fitness 
function for each test path of a PUT, and then 
executed those PSOs simultaneously in order to 
generate test data to cover test paths of a PUT. 
The experimental result proves that our 
proposal is more effective than Mao’s [9] test 
data generation method using PSO in terms of 
both automatic and coverage ability for a PUT. 
Our approach also addressed a limitation of 
constraint-based test data generation 
approaches, which generate test data for 
conditions that contain native functions. 

As future works, we will continue to extend 
our proposal to be applicable to many kinds of 
UTs, such as PUTs which contain calls to other 
native functions or PUTs that handle string 
operations or complex data structures. In 
addition, further research is needed to be able to 

apply this proposal for programs not only 
inacademics but also in industry. 
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