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Abstract: Aligning protein-protein interaction networks from different species is a useful 

mechanism for figuring out orthologous proteins, predicting/verifying protein unknown functions 

or constructing evolutionary relationships. The network alignment problem is proved to be  

NP-hard, requiring exponential-time algorithms, which is not feasible for the fast growth of 

biological data. In this paper, we present a novel global protein-protein interaction network 

alignment algorithm, which is enhanced with an extended large neighborhood search heuristics. 

Evaluated on benchmark datasets of yeast, fly, human and worm, the proposed algorithm 

outperforms state-of-the-art algorithms. Furthermore, the complexity of ours is polynomial, thus 

being scalable to large biological networks in practice. 
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1. Introduction* 

Advanced high-throughput biotechnologies 

have been revealing numerous interactions 

between proteins at large-scales, for various 

species. Analyzing those networks is, thus, 

becoming emerged, such as network topology 

analyses [1], network module detection [2], 

evolutionary network pattern discovery [3] and 

network alignment [4], etc. 
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From biological perspectives, a good 

alignment between protein-protein networks 

(PPI) in different species could provide a strong 

evidence for (i) predicting unknown functions 

of orthologous proteins in a less-well studied 

species, or (ii) verifying those with known 

functions [5], or (iii) detecting common 

orthologous pathways between species [6] or 

(iv) reconstructing the evolutionary dynamics 

of various species [4]. 

PPI network alignment methods fall into two 

categories: local alignment and global alignment. 

The former aims identifying  

sub-networks that are conserved across networks 

in terms of topology and/or sequence similarity 
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[7-11]. Sub-networks within a single PPI network 

are very often returned as parts of local alignment, 

giving rise to ambiguity, as a protein may be 

matched with many proteins from another target 

network [12]. The latter, on the other hand, aims 

to align the whole networks, providing 

unambiguous one-to-one mappings between 

proteins of different networks [4, 12, 13-16]. 

The major challenging of network 

alignment is computational complexity. It 

becomes even more apparent as PPI networks 

are becoming larger (Network may be of up to 

104 or even 105 interactions). Nevertheless, 

existing approaches are optimized only for 

either the performance accuracy or the  

run-time, but not for both as expected, for 

networks of medium sizes.  In this paper, we 

introduce a new global PPI network (GPN) 

algorithms that exploit the adaptive large 

neighborhood search. Thorough experimental 

results indicate that our proposed algorithm 

could attain better performance of high 

accuracy in polynomial run-time when 

compared to other state-of-the-art algorithms. 

2. Problem statement 

Let 𝐺1  =  (𝑉1, 𝐸1) and 𝐺2  =  (𝑉2, 𝐸2) be 

PPI networks where 𝑉1, 𝑉2 denotes the sets of 

nodes corresponding to the proteins. 𝐸1, 𝐸2 

denotes the sets of edges corresponding to the 

interactions between proteins. An alignment 

network 𝐴12= (𝑉12, 𝐸12), in which each node in 

𝑉12 can be presented as a pair < 𝑢𝑖, 𝑣𝑗 > 

where 𝑢𝑖 ∈ 𝑉1, 𝑣𝑗 ∈ 𝑉2. Every two nodes <

𝑢𝑖, 𝑣𝑗 > and < 𝑢′𝑖, 𝑣′𝑗 > in 𝑉12 are distinct in 

case of 𝑢𝑖 ≠ 𝑢′𝑖 and 𝑣𝑗 ≠ 𝑣′𝑗. The edge set of 

alignment network are the so-called conserved 

edge, that is, for edge between two nodes <
𝑢𝑖, 𝑣𝑗 > and  < 𝑢′𝑖, 𝑣′𝑗 > if and only if  <

𝑢𝑖, 𝑢′𝑖> ∈  𝐸1 and < 𝑣𝑗, 𝑣′𝑗> ∈  𝐸2. 

 

Figure 1. An example of an alignment of two networks [17]. 

 

Although an official definition of successful 

alignment network is not proposed, informally 

the common goal of recent approaches is to 

provide an alignment so that the edge set 𝐸12 is 

large and each pair of node mappings in the set 

𝑉12 contains proteins with high sequence 

similarity [4, 18, 13, 14]. Formally, the 

definition of pairwise global PPI network 

alignment problem of 𝐴12 = (𝑉12, 𝐸12) is to 

maximize the global network alignment score, 

defined as follows [12]: 
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𝐺𝑁𝐴𝑆(𝐴12) =  𝛼 × |𝐸12| + (1 −  𝛼)

× ∑ 𝑠𝑒𝑞(𝑢𝑖, 𝑣𝑗)

∀ <𝑢𝑖,𝑣𝑗> 

 

The constant 𝛼 ∈ [0, 1] in this equation is a 

balancing parameter intended to vary the relative 

importance of the network-topological similarity 

(conserved edges) and the sequence similarities 

reflected in the second term of sum. Each 

𝑠𝑒𝑞(𝑢𝑖, 𝑣𝑗) can be an approximately defined 

sequence similarity score based on measures such 

as BLAST bit-scores or E-values. 

3. Related state-of-the-art work 

By far there have been various 

computational models proposed for global 

alignment of PPI networks (e.g. [4, 12, 13, 14, 

15, 16], as alluded in the introduction section). 

Among them, to the best of our knowledge, 

Spinal and FastAN are recently state-of-the-art. 

3.1. SPINAL 

SPINAL, proposed by Ahmet E. Aladağ 

[12], is a polynomial runtime heuristic 

algorithm, consisting of two phases: Coarse-

grained phase alignment phase and fine-grained 

alignment phase. The first phase constructs all 

pairwise initial similarity scores based on 

pairwise local neighborhood matching. Using 

the given similarity scores, the second phase 

builds one-to-one mapping bfy iteratively 

growing a local improvement subset. Both 

phases make use of the construction of 

neighborhood bipartite graphs and the 

contributors as a common primitive. SPINAL is 

tested on PPI networks of yeast, fly, human and 

worm, demonstrating that SPINAL yields better 

results than IsoRank of Singh et al. (2008) [13] 

in terms of common objectives and runtime. 

3.2. FastAN 

FastAN, proposed by Dong et al. (2016) 

[16], includes two phases, called Build and 

Rebuild. They both employ the same strategy 

similar to neighborhood search algorithms (see 

Section 4.1) that repeatedly destroy and repair 

the current found solution. The first phase is to 

build an initial global alignment solution by 

selecting iteratively an unaligned node from one 

network, which has the most connections to 

aligned nodes in the network, to pair with the 

best-matched node from the other network (See 

the Build phase, the first For loop, in Algorithm 

1). The second phase follows the worst removal 

strategy to destroy the worst parts (99%) of the 

current solution based on their scores 

independently calculated. FastAN keeps 1% 

best pairs remained as a seeding set for 

reconstructing the solution. The reconstructing 

procedure is the same as the first phase. It 

reconstructs the destroyed solution by 

repeatedly adding best parts at the moment. 

FastAN accept every newly created solution 

from which it randomly choose one to follow. 

Using the same objective function and the 

dataset as SPINAL, FastAN yields much better 

result than SPINAL [12]. 

4. Materials 

4.1. Neighborhood search 

Given 𝑆 the set of feasible solutions for 

globally aligning two networks and I being an 

instance (or input dataset) for the problem, we 

denote 𝑆(𝐼) when we need to emphasise the 

connection between the instance and solution 

set. Function 𝑐: 𝑆 →  ℝ maps from a solution to 

its cost. 𝑆 is assumed to be finite, but is usually 

an extremely large set. We assume that the 

combinatorial optimization problem is a 

maximization problem, that is, we want to find 

a solution 𝑠∗ such that 𝑐(𝑠∗)  >= 𝑐(𝑠) ∀𝑠 ∈  𝑆. 

We define a neighborhood of a solution 𝑠 ∈
 𝑆 as 𝑁(𝑠) ⊆ 𝑆. That is, 𝑁 is a function that 

maps a solution to a set of solutions. A solution 

s is considered as locally optimal or a local 

optimum with respect to a neighborhood 𝑁 if 

𝑐(𝑠)  >=  𝑐(𝑠’) ∀𝑠’ ∈  𝑁(𝑠). With these 

definitions it is possible to define a 

neighborhood search algorithm. The algorithm 

takes an initial solution 𝑠 as input. Then, it 

computes 𝑠’ =  𝑎𝑟𝑔 𝑚𝑎𝑥𝑠′′∈𝑁(𝑠) {𝑐(𝑠′′)}, that 
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is, it searches the best solution 𝑠’ in the 

neighborhood of s. If c(s’) > c(s) is found, the 

algorithm performs an update 𝑠 =  𝑠’. The 

neighborhood of the new solution s is 

continuously searched until it is converged in a 

region where local optimum 𝑠 is reached. The 

local search algorithm stops when no improved 

solution is found (see Algorithm 1). This 

neighborhood search (NS), which always 

accepts a better solution to be expanded, is 

denoted a steepest descent (Pisinger) [19].  

 

Algorithm 1. Neighborhood search in pseudo codes 

𝑰𝑵𝑷𝑼𝑻: 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐼 

𝐶𝑟𝑒𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑚𝑖𝑛 ∈ 𝑆(𝐼); 

𝑾𝑯𝑰𝑳𝑬 (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑛𝑜𝑡 𝑚𝑒𝑡) { 

    𝑠′ =  𝑟(𝑑(𝑠)); 

        𝑰𝑭 𝑎𝑐𝑐𝑒𝑝𝑡(𝑠, 𝑠′) {  

            𝑠 =  𝑠’; 

 𝑰𝑭 𝑐(𝑠′) >  𝑐(𝑠𝑚𝑖𝑛)  

     𝑠𝑚𝑖𝑛 = 𝑠′; 

        } 

} 

𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑚𝑖𝑛 

 

4.2. Large neighborhood search 

Large neighborhood search (LNS) was 

originally introduced by Shaw [20]. It is a meta-

heuristic that neighborhood is defined implicitly 

by a destroy-and-repair function. A destroy 

function destructs part of the current solution 𝑠 

while repair function rebuilds the destroyed 

solution. The destroy function should pre-

define a parameter, which controls the degree of 

destruction. The neighborhood 𝑁(𝑠) of a 

solution 𝑠 is calculated by applying the destroy-

and-repair function. 

4.3. Adaptive Large Neighborhood search 

Adaptive Large Neighborhood Search 

(ALNS) is an extension of Large Neighborhood 

Search and was proposed by Ropke and 

Prisinger [19]. Naturally, different instances of 

an optimization problem are handled by 

different destroy and repair functions with 

varying level of success. It may difficult to 

decide which heuristics are used to yield the 

best result in each instance. Therefore, ALNS 

enables user to select as many heuristics as he 

wants. The algorithm firstly assigns for each 

heuristic a weight which reflects the probability 

of success. The idea, that passing success is 

also a future success, is applied. During the 

runtime, these weights are adjusted periodically 

every 𝑃𝑢 iterations. The selection of heuristics 

based on its weights. Let 𝐷 =  {𝑑𝑖 |𝑖 = 1. . 𝑘} 

and 𝑅 =  {𝑟𝑖 |𝑖 = 1. . 𝑙} are sets of destroy 

heuristics and repair heuristics. The weights of 

heuristics are 𝑤(𝑟𝑖) and 𝑤(𝑑𝑖). 𝑤(𝑟𝑖) and 

𝑤(𝑑𝑖) are initially set as 1, so the probability of 

selection of heuristics are: 

𝑝(𝑟𝑖) =  
𝑤(𝑟𝑖)

∑ 𝑤(𝑟𝑗)𝑙
𝑗=1

  and  𝑝(𝑑𝑖) =  
𝑤(𝑑𝑖)

∑ 𝑤(𝑑𝑗)𝑘
𝑗=1

 

Apart from the choice of the destroy-and-

repair heuristics and weight adjustment every 

update period, the basic structure of ALNS is 

similar LNS (see Algorithm 2). 

 

Algorithm 2: Adaptive Large Neighborhood 

Search algorithm 

𝑰𝑵𝑷𝑼𝑻: 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐼 

𝐶𝑟𝑒𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑚𝑖𝑛 ∈ 𝑆(𝐼); 

𝑾𝑯𝑰𝑳𝑬 (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑛𝑜𝑡 𝑚𝑒𝑡) { 

    FOR i = 1 TO 𝑝𝑢 DO { 

        select 𝑟 ∈  𝑅, 𝑑 ∈  𝐷 according to 

probability;              

        𝑠′ =  𝑟(𝑑(𝑠)); 

        𝑰𝑭 𝑎𝑐𝑐𝑒𝑝𝑡(𝑠, 𝑠′) {  

            𝑠 =  𝑠’; 

            𝑰𝑭 𝑐(𝑠′) >  𝑐(𝑠𝑚𝑖𝑛)  

                𝑠𝑚𝑖𝑛 = 𝑠′; 

        } 

        update weight 𝑤, and probability 𝑝; 

}𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑚𝑖𝑛 

5. Proposed model 

We note that FastAN still has some 

limitations, including: (i) randomly choosing a 
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newly constructed solution to follow may yield 

the unexpected results, gearing to the local 

optimum by chance. (ii) The fixed degree of 

destruction at 99% may reduce the flexibility of 

neighborhood searching process. Setting this 

degree too large can be used to diverse the 

search space, however, would cause the best 

results hardly to be reached. Newly constructed 

solutions are not real neighbors of the current 

solution, thus being totally irrelevant solutions). 

(iii) The heuristic worst part removal of the 

current solution may get FastAN stuck in a 

local optimum because of the absence of 

diversity.  Moreover, using only one heuristic 

does not guarantee the best result found for 

different instances of problem. (iv) The basic 

greedy heuristic in ALNS is employed to repair 

destroyed solutions. Although it always 

guarantees better solutions to be yielded, but it 

is not the optimal way to construct the best 

solution. There is another better heuristic called 

n-regret could be employed. (v) Using only one 

destroy heuristic and one repair (construction) 

heuristic does not provide the weight 

adjustment. Two heuristics are always chosen 

with 100% of probability. 

  To this end, in this paper, we aim at 

eliminating those limitations by proposing a 

novel global protein-protein network alignment 

model that is mainly based on FastAN. Unlike 

FastAN, which employs a neighborhood search 

algorithm, the proposed model improves 

FastAN by adopting a rigorous adaptive large 

neighborhood search (ALNS) strategy for the 

second phase (namely Rebuild) of FastAN. The 

Build phase is similar to that of FastAN (See 

Alogrithm 3). 

 

Alogrithm 3:  Pseudo code for our proposed PPI 

alignment algorithm 

𝑰𝑵𝑷𝑼𝑻: 𝐺1 = (𝑉1, 𝐸1), 𝐺2 = (𝑉2, 𝐸2), 

 Similarity Score Seq[i][j], balance factor α 

𝑶𝑼𝑻𝑷𝑼𝑻: An alignment 𝐴12 

//Build Phase, similar to that of FastAN [21] 

𝑉12 = < 𝑖, 𝑗 > //with seq[i][j] is maximum 

𝑭𝑶𝑹 𝑘 = 2 𝑻𝑶 | 𝑉1| 𝑫𝑶 { 
    𝑖 = 𝑓𝑖𝑛𝑑_𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒(𝐺1); 
    𝑗 = 𝑓𝑖𝑛𝑑_𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ(𝑖, 𝐺1, 𝐺2); 
    𝑉12 =  𝑉12  ∩ < 𝑖, 𝑗 >; 

} 
//Rebuild phase 

𝑭𝑶𝑹 𝑖𝑡𝑒𝑟 =  1 𝑻𝑶 𝑛_𝑖𝑡𝑒𝑟 𝑫𝑶 { 
    𝑑 =  𝑔𝑒𝑡_𝑑(𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥); 
  de𝑡𝑟𝑜𝑦_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 =
 𝑠𝑒𝑙𝑒𝑐𝑡_𝑑𝑒𝑠𝑡𝑟𝑜𝑦_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐(); 

   𝑟𝑒𝑝𝑎𝑖𝑟_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 =
 𝑠𝑒𝑙𝑒𝑐𝑡_𝑟𝑒𝑝𝑎𝑖𝑟_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐(); 
    𝑛𝑒𝑤_𝑠𝑜𝑙 =
𝑑𝑒𝑠𝑡𝑟𝑜𝑦(𝑑𝑒𝑠𝑡𝑟𝑜𝑦_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝑉12, 𝑑); 

    𝑛𝑒𝑤_𝑠𝑜𝑙 =
𝑟𝑒𝑝𝑎𝑖𝑟(𝑟𝑒𝑝𝑎𝑖𝑟_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝑛𝑒𝑤_𝑠𝑜𝑙); 

    //reward for successful heuristics 

    𝑰𝑭 (𝐺_𝐵𝐸𝑆𝑇 <  𝑠𝑐𝑜𝑟𝑒(𝑛𝑒𝑤_𝑠𝑜𝑙)) { 

       𝐺_𝐵𝐸𝑆𝑇 = 𝑠𝑐𝑜𝑟𝑒(𝑛𝑒𝑤_𝑠𝑜𝑙); 

    

𝑟𝑒𝑤𝑎𝑟𝑑(𝑑𝑒𝑠𝑡𝑟𝑜𝑦_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝑟𝑒𝑝𝑎𝑖𝑟_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝛿1); 

    } 

    𝑰𝑭 (𝑠𝑐𝑜𝑟𝑒(𝑉12)  <  𝑠𝑐𝑜𝑟𝑒(𝑛𝑒𝑤_𝑠𝑜𝑙))  

        

𝑟𝑒𝑤𝑎𝑟𝑑(𝑑𝑒𝑠𝑡𝑟𝑜𝑦_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝑟𝑒𝑝𝑎𝑖𝑟_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝛿2); 

    𝑰𝑭 (𝑎𝑐𝑐𝑒𝑝𝑡(𝑉12, 𝑛𝑒𝑤_𝑠𝑜𝑙)) { 

        𝑉12 = 𝑛𝑒𝑤_𝑠𝑜𝑙; 
        

𝑟𝑒𝑤𝑎𝑟𝑑(𝑑𝑒𝑠𝑡𝑟𝑜𝑦_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝑟𝑒𝑝𝑎𝑖𝑟_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝛿3); 
    } 

    𝑰𝑭 (𝑖𝑡𝑒𝑟 % 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 ==  0)  

        weight_𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡(); 

} 

𝒓𝒆𝒕𝒖𝒓𝒏 𝑉12; 

The proposed algorithm uses a simple 

Threshold Acceptance (TA) heuristic for 

adaptive large neighborhood search. TA accepts 

any solutions of which its difference from the 

best so far (G-BEST) is not greater than T, a 

manually given parameter in range  

[0, positive inf) (see Procedure 1). 

Procedure 1. Accept function used for adaptive large 

neighborhood search 

Boolean accept_function (sol, new_sol) { 

    IF (𝑐𝑜𝑠𝑡𝑠𝑜𝑙 − 𝑐𝑜𝑠𝑡𝑛𝑒𝑤_𝑠𝑜𝑙 ≤ 𝑇 ) 

        𝒓𝒆𝒕𝒖𝒓𝒏 𝑇𝑟𝑢𝑒; 

    𝒓𝒆𝒕𝒖𝒓𝒏 𝐹𝑎𝑙𝑠𝑒; 
} 

Note that the threshold T is set as a constant 

rather than increasing or decreasing due to the 
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success of heuristic. The algorithm is supposed 

to search around the G_BEST solution at a 

constant radius. Decreasing the radius may limit 

the search space due to the fact that there are 

still many other heuristics, which have a chance 

to find better results. 

The degree of destruction used in our 

ALNS of the proposed algorithm has the 

opposite meaning: in particular, d is the size of 

seeding set, not the destruction degree (see the 

second For loop in Algorithm 3). 𝑑 is randomly 

selected from the range [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥], two 

given parameters of the algorithm. The 

suggested range is from 0.01 to 0.1; meaning 

that the algorithm should destroy 90% to 99% 

the solution. 

There are two destroy heuristics for ALNS 

in our proposed algorithm, namely Random 

Removal and Worst Removal. The former 

destroys the current solution at some randomly 

chosen part of the solution while the latter at the 

worst part. It is argued that Worst Removal is 

better than Random removal in term of yielding 

better local result, but lack of randomization. 

The combination of Random Walk and Worst 

Removal is suggested to deal with this problem. 

It raises a concern that Random Removal may 

not yield the best result; however, it does not 

happen due to the observation that the 

probability of choice Random Walk always 

decreases after a few iterations. As a result, this 

heuristic is not often selected and does not 

touch the solution quality rebuild process. 

Nevertheless, Random Walk contributes to 

diverse search space, which solves the 

drawback of Worst Removal. 

Regarding the repair heuristic in ALNS of 

the proposed algorithm, we proposed two 

heuristics, i.e. Basic Greedy and n-regret. Basic 

Greedy heuristic is same as that in FastAN. The 

difference is the n-regret heuristic (see 

Procedure 2), in which we selected the top 3 best 

candidates from 𝑉1 that have the most 

connections to the seeding set. Of course, these 

candidates have had to not appear in the seeding 

set yet. The next steps is that we loop every 

candidate from 𝑉2 calculate the best and 

second-best score of each pairs. Candidate from 

𝑉2 should not appear in seeding set also. The 

candidate, from 𝑉1 that has biggest gap from its 

best and second best, is selected. The 

corresponding candidate 𝑉2 is also selected. 

 

Procedure 2: n_regret heuristic in pseudo codes 

𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑛_𝑟𝑒𝑔𝑟𝑒𝑡(𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡) { 

    𝑾𝑯𝑰𝑳𝑬 𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑢𝑙𝑙 { 
        𝑡𝑜𝑝_3 =  {}; 
        

𝑭𝑶𝑹 𝑒𝑣𝑒𝑟𝑦 𝑢 𝑖𝑛 𝑉1 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑖𝑛 𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡 {  

       

𝑰𝑭 (𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠_𝑡𝑜_𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡(𝑢, 𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡) 𝑖𝑛 𝑡𝑜𝑝_3)  

                𝑢𝑝𝑑𝑎𝑡𝑒 𝑡𝑜𝑝_3; 

        } 

        𝑑𝑖𝑓𝑓_1 =  𝑑𝑖𝑓𝑓_2 =  𝑑𝑖𝑓𝑓_3 =  0; 

       

𝑭𝑶𝑹 𝑒𝑣𝑒𝑟𝑦 𝑣 𝑖𝑛 𝑉2 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑖𝑛 𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡  { 

            𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑏𝑒𝑠𝑡_𝑢1, 𝑏𝑒𝑠𝑡_𝑢2, 𝑏𝑒𝑠𝑡_𝑢3;  

            𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑠𝑒𝑐𝑜𝑛𝑑𝑏𝑒𝑠𝑡𝑢1
, 𝑠𝑒𝑐𝑜𝑛𝑑𝑏𝑒𝑠𝑡𝑢2

,  

                                                       𝑠𝑒𝑐𝑜𝑛𝑑_𝑏𝑒𝑠𝑡_𝑢3; 

            𝑑𝑖𝑓𝑓_1 =  |𝑏𝑒𝑠𝑡_𝑢1 –  𝑠𝑒𝑐𝑜𝑛𝑑_𝑏𝑒𝑠𝑡_𝑢1|; 

            𝑑𝑖𝑓𝑓_2 =  |𝑏𝑒𝑠𝑡_𝑢2 –  𝑠𝑒𝑐𝑜𝑛𝑑_𝑏𝑒𝑠𝑡_𝑢3|; 

            𝑑𝑖𝑓𝑓_3 =  |𝑏𝑒𝑠𝑡_𝑢3 –  𝑠𝑒𝑐𝑜𝑛𝑑_𝑏𝑒𝑠𝑡_𝑢3|; 

        } 

    

𝑠𝑒𝑙𝑒𝑐𝑡 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑤ℎ𝑖𝑐ℎ ℎ𝑎𝑠 𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑑𝑖𝑓𝑓 𝑑𝑒𝑛𝑜𝑡𝑒  

𝑎𝑠 (𝑐𝑎𝑛𝑑𝑉1, 𝑐𝑎𝑛𝑑𝑉2); 

        

𝑎𝑑𝑑 (𝑐𝑎𝑛𝑑𝑉1, 𝑐𝑎𝑛𝑑𝑉2) 𝑝𝑎𝑖𝑟 𝑡𝑜 𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡; 

    } 

    𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡; 
} 

It can be seen that, 1_regret is Basic Greedy 

which always select the candidate from 𝑉1 

which has the most connections and the best 

score from the candidate from 𝑉2. An obvious 

problem of Basic Greedy is that it often 

postpones the placement of difficult choice to 

the last iterations where we do not have much 

freedom of action. The regret heuristic tries to 

circumvent the problem by incorporating a kind 

of look-ahead information when selecting the 

request to insert. The Regret heuristic had been 

used by Potvin and Rousseau [21] for the 

VRPTW and in the context of the generalized 

assignment problem Trick [22]. 
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Let ∆𝑓𝑢
𝑞
 be the change in the objective 

value incurred by adding pair 𝑢, 𝑣, which v is 

the 𝑞𝑡ℎ candidate from 𝑉2 corresponding to u, 

to the seeding-set. For example ∆𝑓𝑢
2 denote the 

change when adding pair u, and its second-best 

v. Each selection, the regret heuristic chooses to 

insert u according to: 

𝑢 =  arg 𝑚𝑎𝑥𝑢 𝑖𝑛  𝑉1
(∑ ∆𝑓𝑢

1

𝑛

ℎ=2

−  ∆𝑓𝑢
ℎ) 

The candidate u is selected with a 

maximum the cost of v. It means that we 

maximize the difference of cost of selecting 

candidate u in its best way and its second best 

way. Ties can be broken by randomly choosing 

among them. The proposed algorithm repeats 

until seeding_set is full. Clearly, higher n, 

longer the run time, so that the regret heuristic 

is used in the new algorithm is 2-regret 

heuristic. Also, the set 𝑉1 and 𝑉2 are up to 1𝑒4, 

so that we can not consider all candidate from 

𝑉1, that explains why top 3 candidate u from 𝑉1 

are chosen to applying regret strategy. 

The proposed algorithm uses the weight 

adjustment strategy for ALNS, which is as the 

same as that in [22]. As we mentioned above, 

the weight of Random Walk are always much 

lower than that of Worst Removal, and quickly 

decreases to 0. All weights are set at 1 initially. 

Interestingly, the weights of n_regret always 

outperform those of Basic Greedy, so that the 

properties of n_regret are strongly convinced. 

The Worst Removal heuristic, however, is not 

too low at all. It means that Worst Removal is 

still a good heuristic in network 

alignment problem. 

6. Experimental results 

6.1. Implementation and datasets 

Our proposed algorithm is implemented in 

C++11; source code is freely available at 

https://github.com/meodorewan/thesis. We do 

experiments on benchmark data sets from four 

species: Saccharomyces cerevisiae, Drosophila 

melanogaster, Caenorhabditis elegans and 

Homo sapiens. All datasets are used in all state-

of-the-art models, i.e. IsoRank, SPINAL, 

FastAN, etc. The PPI network sizes are as 

follows: 5499 proteins and 31 261 interactions 

in the S. cerevisiae network, (7518, 25 635) in 

D. melanogaster, (2805, 4495) in C. elegans 

and (9633, 34327) in H. sapiens (Table 1). 

Table 1. Number of proteins and interactions 

between them in experimental datasets 

Dataset 
Number of 

Proteins 

Number of 

Interactions 

Saccharomyces 

cerevisiae 
5499 31261 

Drosophila 

melanogaster 
7518 25635 

Caenorhabditis 

elegans 
2805 4495 

Homo sapiens 9633 34327 

6.2. Experimental results in comparison 

with FastAN 

We first examine the efficiency of each 

improvement in the proposed algorithm 

including strategy of choosing a degree of 

destruction, different destroy and repair 

functions. The objective function is described in 

section 1.2. Results for each improvement are 

compared with those of FastAN. 

 

6.3. Improvement with randomization of 

destruction degree 

Here is the first improvement, we keep all 

settings as same as the original FastAN 

algorithm except for only the strategy of 

choosing 𝑑. FastAN is using destroy heuristic 

Worst Removal, and repair heuristic is Basic 

Greedy. It fixed 𝑑 = 99%, while we randomize 

parameter 𝑑 in range [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥]. 

Table 2.  Experimental results of FastAN + d. 

Dataset 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7 

FastAN FastAN 

+ d 

FastAN FastAN 

+ d 

FastAN FastAN 

+ d 

ce-dm 778.46 823.19 1290.11 1363.42 1801.24 1915.25 

ce-hs 863.46 878.79 1429.89 1445.54 1994.87 2035.78 

ce-sc 834.79 867.58 1389.21 1434.13 1936.83 2016.16 

dm-hs 2260.31 2318.82 3755.36 3857.11 5242.32 5402.33 

dm-sc 1977.82 2020.35 3290.03 3361.21 4603.41 4688.87 

https://github.com/meodorewan/thesis
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hs-sc 2268.21 2342.29 3772.96 3911.03 5279.88 5444.05 

Through the experimental results shown in 

Table 2, we can conclude that the strategy of 

choosing destruction degree is advantaged. The 

results are much better than that of original 

FastAN with fixed 𝑑 at 99%. The reason is that 

fixed parameter 𝑑 may limit the search space 

and be difficult to find a new local optimum. 

By randomizing 𝑑 in range [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥], we 

can diverse the neighborhoods and be able to 

find better optimum. 

6.4. Improvement with destroy heuristic 

Random Removal 

Setting of this improvement is that we use 

one destroy heuristic (i.e. Random Removal) 

instead of the Worst Removal in FastAN. Other 

settings are kept, including destruction degree 

at 99% for the repair heuristic (Basic Greedy). 

Experiment shown in Table 3 demonstrates that 

destroy heuristic Random Removal is 

disoriented searching strategy, it can be useful 

when local minimum reached, but 

disadvantaged during searching process. This 

explains why we should set the weight of this 

heuristic much lower than other oriented 

searching strategies. 

Table 3. Experimental results of FastAN + 

random removal. 

Datas

et 

𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7 

FastAN FastAN 

+ RR 

FastAN FastAN 

+ RR 

FastAN FastAN 

+ RR 

ce-dm 778.46 733.57 1290.11 1211.63 1801.24 1680.53 

ce-hs 863.46 816.59 1429.89 1351.99 1994.87 1889.16 

ce-sc 834.79 790.07 1389.21 1307.96 1936.83 1831.65 

dm-hs 2260.31 2109.93 3755.36 3498.53 5242.32 4886.54 

dm-sc 1977.82 1837.01 3290.03 3056.96 4603.41 4272.97 

hs-sc 2268.21 2092.27 3772.96 3476.05 5279.88 4890.21 

 

6.5. Improvement with repair heuristic 2-regret 

Setting of this improvement is about repair 

heuristic. We examine the efficiency of the 2-

regret heuristic comparing to Basic Greedy one. 

All other settings are kept originally. The result 

shows that the 2-regret heuristic outperformed 

most of the tests except ce-hs one (Table 4). It 

can be concluded that the heuristic 2-regret is 

better than Greedy heuristic in most of 

the cases. 

Table 4. Experimental results of FastAN + 2-

regret repair heuristic. 

 

Dataset 

𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7 

FastAN FastAN 

+ 

regret-2 

FastAN FastAN 

+ 

regret-2 

FastAN FastAN 

+ 

regret-2 

Ce-dm 778.46 815.99 1290.11 1352.25 1801.24 1881.70 

ce-hs 863.46 860.24 1429.89 1413.04 1994.87 1965.16 

ce-sc 834.79 864.33 1389.21 1429.55 1936.83 2007.28 

dm-hs 226031 2281.21 3755.36 3788.08 5242.32 5290.47 

dm-sc 1977.82 1983.21 3290.03 3297.65 4603.41 4603.61 

hs-sc 2268.21 2274.16 3772.96 3784.53 5279.88 5283.64 

 

6.6. Improvement with the adaptive framework 

In this version, we applied the adaptive 

strategy without modification of destruction 

degree. In other words, this version is similar to 

the new algorithm except for fixed destruction 

degree at 99%. This version is to compare the 

efficiency of an adaptive framework with 

original FastAN algorithm. The experiment 

results reveal that adaptive framework works 

better in three smaller tests, but not effective in 

three large ones (Table 5). It can be explained 

that local optimum is not reached, we should 

increase the number of iterations to get better 

results than those of FastAN. 

 

Table 5: Experimental results of FastAN + 

adaptive framework. 

Dataset 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7 

FastAN FastAN 

+ 

adaptive 

FastAN FastAN 

+ 

adaptive 

FastAN FastAN 

+ 

adaptive 

ce-dm 778.46 783.815 1290.11 1310.45 1801.24 1812.91 

ce-hs 863.46 875.09 1429.89 1453.00 1994.87 2018.28 

ce-sc 834.79 841.13 1389.21 1408.47 1936.83 1950.30 

dm-hs 2260.31 2208.78 3755.36 3646.98 5242.32 5099.03 

dm-sc 1977.82 1920.44 3290.03 3195.56 4603.41 4467.44 

hs-sc 2268.21 2231.89 3772.96 3691.48 5279.88 5177.50 
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Table 6. Parameters settings of the proposed 

algorithm 

Parameter Describe Setting 

𝑑𝑚𝑖𝑛  The lower bound of degree of 

destruction 

0.01 

𝑑𝑚𝑎𝑥  The upper bound of degee of 

destruction 

0.1 

N_RUN The number of iteration 100 

PERIOD The update period for weight 

adjustment 

5 

ρ The degenerative factor  0.1 

𝛿1 Reward for solution which 

has best cost so far 

0.8 

𝛿2 Reward for solution which 

has better cost 

0.3 

𝛿3 Reward for solution which is 

accepted 

0 

N_TEST Number of execution to test 

the stability of algorithm 

10 

T Threshold 5 

 

6.7. Results in terms of alignment objectives 

 We measure the accuracy of the proposed 

algorithms in terms of the maximization 

objective formulated in section 1.2. The number 

of conserved interactions, that is, the edge set 

size of the alignment network, denoted with 𝐸12 

in the equation is a common performance 

indicator used in almost all the global network 

alignment studies [4, 18, 13, 14]. Because the 

optimization goal is also commonly defined as 

in section 1.2, we include the score obtained 

from 𝐺𝑁𝐴𝑆(𝐴12) as well as |𝐸12| in our 

evaluations of an alignment 𝐴12. The studied 

algorithms are examined under a specific 

setting of input parameters. Parameter setting 

for the proposed algorithm consists of varying 

the constant 𝛼 from 0.3 to 0.7 in the increments 

of 0.2 (see Table 6 for other settings). Table 7 

summarizes the performance in terms of such 

two objectives of the proposed algorithms in 

comparison with SPINAL and FastAN. 

Obviously, the new algorithm yields the highest 

scores for all datasets examined.  

6.8. Complexity and runtime 

The complexity of the proposed algorithm 

is same as FastAN 𝑂(|𝑉1| ∗  |𝐸1| + |𝑉1| ∗ |𝐸2|) 

for each iteration. The number of iteration is 

constant. All additional heuristics used have the 

 

Table 7. Performance in terms of two objectives (i.e. the size of conserved interactions set E12 and the 

bottom indicates the score obtained from 𝐺𝑁𝐴𝑆(𝐴12)) of the proposed algorithms (indicated by “Ours”) in 

comparison with SPINAL and FastAN. 

Dataset 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7 

SPINAL FastAN Ours SPINAL FastAN Ours SPINAL FastAN Ours 

ce-dm 717.99 

2343 

778.46 

2560.7 

821.98 

2710.8 

1159.93 

2300.0 

1290.11 

2567.2 

1348.1 

2684.9 

1586.87 

2258.0 

1801.24 

2567.6 

1885.1 

2688.4 

ce-hs 728.26 

2370 

863.46 

2842.8 

913.59 

3016.1 

1229.95 

2437.0 

1429.89 

2844.9 

1482.3 

2952.8 

1764.93 

2512.0 

1994.87 

2843.4 

2061.8 

2940.3 

ce-sc 709.12 

2326 

834.79 

2761.1 

884.48 

2930.9 

1168.95 

2323.0 

1389.21 

2769.7 

1454.9 

2902.6 

1683.13 

2398.0 

1936.83 

2763.1 

2023.4 

2887.6 

dm-hs 1883.22 

6189 

2260.31 

6569.7 

2305.2 

7633.7 

3160.48 

6282.0 

3755.36 

7429.0 

3785.5 

7549.6 

4451.6 

6344.0 

5242.32 

7478.8 

5285.9 

7542.2 

dm-sc 1579.06 

5203 

1977.82 

6569.7 

2017.5 

6702.6 

2668.65 

5311.0 

3290.03 

6570.7 

3346.0 

6682.7 

3759.07 

5360.0 

4603.41 

6572.3 

4657.6 

6649.7 

hs-sc 1731.81 

5703 

2268.21 

7531.8 

2302.4 

7648.7 

2839.00 

5651.0 

3772.96 

7535.2 

3869.0 

7728.4 

4066.22 

5798.0 

5279.88 

7538.1 

5383.5 

7686.6 
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same complexity as it is in Rebuild phase. The 

proposed algorithm’s runtime is also same as 

FastAN’s runtime.  

The hardware used to run the experiment is 

an Intel(R) Xeon(R) CPU E5-2697 v4 @ 

2.30GHz 16GB of RAM. Comparison runtime 

is shown below. The runtime of the new 

algorithms is likely to be as three times as that 

of FastAN and approximately equal to 

SPINAL’s runtime with all size of datasets (see 

Table 8). This can be explained that the 

complexity of constant multiply depends on 

which heuristic is selected. For example, the 

complexity constant multiply for 2-regret repair 

heuristic is 3. However, it has no meaning for 

complexity analysis. 

Table 8. Runtime of the proposed algorithm in 

comparison with SPINAL and FastAN.  

Dataset SPINAL FastAN New algorithm 

ce-dm 540.2 221.5 697.9 

ce-hs 664.3 327.9 846.6 

ce-sc 638.2 142.2 588.4 

dm-hs 1736.8 1395.9 3924.4 

dm-sc 1912.1 1064.5 2238.8 

hs-sc 2630.6 1507.8 2497.6 

7. Discussion and future work 

In this paper we proposed a novel global 

protein-protein network alignment algorithm, 

which is mainly based on FastAN algorithm 

[16]. Ours improves FastAN by applying the 

Adaptive Large Neighborhood Search. We have 

solved several limitations of FastAN by 

proposing two destroy/repair heuristics, and a 

new accept a function as well. Thorough 

experiments demonstrate out-performance of 

the proposed algorithm when compared to 

FastAN. We note that the parameters used in 

the proposed algorithm have not been tuned yet. 

Tuning them can be a potential for further 

perspective work. 
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