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Abstract 

Liver segmentation is relevant for several clinical applications. Automatic liver segmentation using 

convolutional neural networks (CNNs) has been investigated recently. In this paper we present a study on 

combining largest connected component (LCC) algorithm, as a post processing step, to liver segmentation using 

CNN approaches to improve the segmentation accuracy. In our work, we used a variety of liver CT images, ranging 

from non-contrast enhanced CT images to low-dose contrast enhanced CT images. We combined the algorithm 

with three well-known CNNs for liver segmentation: FCN-CRF, DRIU and V-net. The methods were evaluated 

using Dice score, Haudorff distance, mean surface distance, and false positive rate between the liver segmentation 

and the ground truth. The quantitative results showed that LCC algorithm statistically significantly improves the 

liver segmentation result of the liver segmentation on non-contrast enhanced and low-dose images for all three 

CNNs. The V-net showed the best performance in Dice score (higher than 90%) while the DRIU network achieved 

the smallest computation time (2 to 6 seconds) for a single segmentation on average. The source code of this study 

is publicly available at  https://github.com/kennyha85/Liver-segmentation. 
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1. Introduction* 

Liver cancer is one of the highest mortality 

cancers worldwide [8], with total of 

approximately 800 000 new cases annually. In 

general, the 5-year survival rate of liver cancer 

patient without treatment is less than 15% [13]. 

Liver cancer is more common in sub-Saharan 

Africa and Southeast Asia regions compared 

with Europe and United States. In some 

developing countries such as Vietnam, it is the 

most common cancer type [12,20]. Liver 

radiofrequency ablation (RFA) has become a 

regular treatment for liver cancer nowadays due 

________ 
* Corresponding author. E-mail.: halm@vnu.edu.vn 

to its several advantages. This type of treatment 

is suitable for the cases of multiple tumors or in 

the early stage. It is a relatively low-risk 

minimally invasive procedure without producing 

toxicity side-effects such as in radioembolization 

and chemoembolization  [30,31]. In addition, the 

liver of patients treated with RFA recovers in just 

a few days after the intervention [32]. 

The CT imaging modality is often used for 

diagnostic of liver cancer and planning of the 

RFA treatment procedure for liver cancer. 3D 

liver segmentation on the CT images of the liver 

is relevant for RFA treatment of liver cancer. In  

https://github.com/kennyha85/Liver-segmentation
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the planning stage, the liver segmentation acts as 

a region of interest, which contains liver tumor 

and the liver vessels (see Figure 1). Firstly, 

visualization of the 3D liver segmentation 

provides information for radiologist to make 

decision of the ablator trajectory insertion. 

Secondly, the liver segmentation may also act as 

a mask region for liver registration using pre-

operative, intra-operative and post-operative CT 

images of the RFA liver intervention [27,28]. 

Typically, liver segmentation can be performed 

manually by a radiologist. This is generally a 

slice-by-slice approach, which requires a 

substantial amount of work, and is tedious and 

complicated, and because of the time required it 

does not match clinical workflow well. 

Therefore, liver segmentation using computer-

based automatic and semiautomatic strategies 

has become a field of active research recently. 

However, the low contrast between the liver and 

nearby organs, liver movement due to breathing 

motion, differences in size, shape and voxel 

intensity inside the liver across different patients 

make the liver segmentation remains challenging 

tasks.

 
Figure 1. A typical contrast enhanced CT image of the liver (A) and the 3D segmentations of the liver, vessels 

and tumors (B). The volume rendering provides 3D visualization of the liver and the tumor in a RFA planning 

stage. 

Several liver segmentation methods have 

been proposed in the literature in the past, and 

these have a high potential to be applied in the 

clinical practice. In general, those methods can 

be classified in to two main groups. The first 

group contains classical statistical and image-

processing approaches such as region growing, 

active contour, deformable models, graph-cuts, 

statistical shape model [5,26]. These methods 

use hand-crafted features, and thus provide 

limited feature representation capability. The 

second groups consist of Convolutional Neural 

Networks (CNNs) which recently have achieved 

remarkable success in many fields in medical 

imaging domain such as object classification, 

object detection and anatomical segmentation. 

Several CNN approaches have shown great 

performance with the accuracy is even 

comparable to manual annotations by experts in 

oncology and radiology [1]. The main reason for 

this success is that CNNs are able to learn a 

hierarchical representation of spatial information 

of images [7]. CNN approaches require large 

amount of data to train the models which is one 

of the main limitations in medical imaging 

research domain because medical image sharing 

is often limited due to privacy concerns. 
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In current liver segmentation, CNN-based 

segmentation algorithms have considerably 

outperformed the classical statistical/image-

processing-based approaches [1,2,3,21]. U-net, 

one of the most well-known CNN architectures, 

introduced by Ronneberger et al. (2015), has 

received high rankings in several competitions in 

the fields of medical image segmentation [1], 

and Christ et al. (2016) have successfully 

segmented the liver using a U-net architecture 

[3] (see Figure 2). Christ et al. (2017) further 

developed a fully convolutional neural network 

(CCN) based on the U-net architecture to 

segment the liver in both CT and MRI images, 

achieving a mean of Dice score of 94% with less 

than 100 training images [2]. Lu et al (2015) 

proposed a 3D CNN-GC method that combines 

a 3D fully convolutional neural network and 

graph cuts to achieve automatic liver 

segmentation in CT images with the accuracy of 

VOE of 9.4% on average [33]. Li et al. (2018) 

introduced the H-dense U-net for automatic liver 

segmentation, which combines intra-slice 

information using 2D dense U-net and inter-slice 

information using a 3D counterpart and obtained 

the mean of DICE of 96.1% [4]. Bellver et al. 

(2017) improvised the original OVOS neural 

network, called DRIU, to segment the liver in 

CT images and achieved comparative results [6]. 

Figure 2: Illustration of 2D U-net architecture for liver segmentation using CT images with the inputs as a 2D 

image and the output as a predicted map of the liver. The networks contain four levels of the hierarchical 

representation. The skip connections provide linear combinations of the feature maps at the same level of 

upsample and down sampling parths. 

 

The number of publications relating to liver 

segmentation using a CNN has been increasing 

dramatically recently and most of them 

participate in the MICCAI grand challenge for 

liver segmentation (LiTS). Those CNNs, in 

general, can be classified into two categories: 2D 

fully convolutional neural networks (2D FCNs) 

[2], [3], [6] and 3D fully convolutional neural 

networks (3D FCNs) [4], [7], [18]. 3D CNNs 

require higher computational complexity and 

consume more VRAM memory, however, the 

segmentation performance of 3D FCN versus 2D 

FCN still remains under debate [21]. Also, as a 

machine learning classification family, CNNs 

perform convolutional filter image classification 

to segment the objects and as a consequence may 

contain several mis-classified voxels. Therefore, 

post-processing techniques may be applied to 

improve liver segmentation using CNNs. 

Conditional Random Forest (CRF) is a well-

known method for post processing of liver 

segmentation. However, based on our previous 

study [29], a CRF does not work well with CNN-

based liver segmentation of low-dose/non-

contrast CT images. In contrast, it was stated by 

Milletari et al. (2016) that “post-processing 

approaches such as connected components 

analysis normally yield no improvement” [7]. 

However, studies on how post-processing 

impacts on the liver segmentation on CT images 

are virtually missing.  

Our hypothesis is that the liver is the largest 

organ in the abdominal, thus the liver 

segmentation should be the largest connected 

component in the segmentations obtain from the 

CNNs. Therefore, in this study, we investigate 

whereas the largest connected component 

method (LCC) can improve the liver 
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segmentation in CT images using CNNs. To do 

this, we apply LCC on the liver segmentation by 

three well known CNN architectures: U-net + 

CRF [2], DRIU [6] and V-net [7] and evaluate 

on three datasets: contrast enhanced CT images, 

low-dose contrast enhanced CT image and low-

dose, non-contrast enhanced CT image to ensure 

solid conclusions. 

The next sections are organized as follows: 

the methods section briefly describes the three 

CNNs architectures and LCC method; next, the 

experiments section presents in details the 

implementation of the CNNs architectures, the 

data used in the study and the criteria for 

evaluating the performance of the proposed 

method. The results are illustrated in section 4, 

which is followed by a discussion of the results 

in section 5. The conclusion section summaries 

the findings in this study. 

2. Method 

2.1 Convolution Neural network architectures 

 Fully Convolutional Network (FCN) 

combined with conditional random fields 

(CRF) 

The fully Convolutional Network (FCN) 

combined with conditional random fields (CRF) 

is proposed by Christ et al. (2017), which 

contains two 2D U-net networks in a cascaded 

structure, to segment both the liver and liver 

tumors sequentially [3]. U-net architecture is 

well-known as a fully convolutional network 

(FCN) which is able to learn a hierarchical 

representation of the image in the training stage 

[2]. In this study, we reimplemented the first U-

net network for the task of liver segmentation 

using CT images. The U-net architecture 

contains 19 layers in 4 levels and divided into 

two parts: the encoder (so called “contracting 

path”) and the decoder (so called “expanding 

path”). The encoder classifies the contextual 

information of all of the pixels in the input image 

via a process of hierarchical extractions, while 

the decoder provides the spatial information of 

the classified pixels to their corresponding 

location in the original image. Furthermore, the 

U-net several skip connections at different levels 

which provide information of the feature maps 

from the encoder section to the decoder section 

at the same levels The benefit of embedding the 

skips connection is that they compensate the part 

of information of the objects which can be loss 

after each layers in the main path of U-net 

architecture. 

The U-net input is 2D images and the output 

is a 2D probability map as the result of a soft 

prediction classifier for each pixel in the original 

images. 

For the optimization process, weighted 

binary cross entropy CE is used as the objective 

loss function: 

𝐶𝐸 =  −
1

𝑁
∑ 𝑤𝑖𝑡𝑖 log(𝑠𝑖)

𝑁

𝑖

 (1) 

where N is the number of pixels involved in the 

training stage; ti is ground truth value which is 

either 0 or 1 when the pixel i is either background 

or foreground; Si is soft prediction score at the 

location pixel i; and wi are the weights that define 

the degree of important of the liver pixels. wi is 

chosen as 1 over the foreground region size.  

Subsequently, a 3D-dense conditional 

random field (CRF) is applied on the 2D 

probability maps, enabling combination of both 

3D spatial coherence and 2D appearance 

information from the slice-wise U-net 

segmentation [3]. 

 V-Net: Fully CNNs for Volumetric Medical 

Image Segmentation 

While most CNNs utilize 2D convolution 

kernels to segment objects in 2D images, the V-

net segments a 3D liver volume using 3D 

convolution kernels embedded in fully 

convolutional neural network [4,7]. The V-net is 

more or less a 3D version of U-net and it also 

contains two parts: the down-sampling path and 

the up-sampling path.  The down-sampling path 

compresses the original 3D images into feature 

maps while the up-sampling path extracts the 

feature maps until the final output reaches the 

original size of the input 3D image. Similar to U-

net, the skip connections from the encoding to 

the decoding path at the same deep levels 

provide spatial information of after each layer 
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and thus further improve the accuracy of the final 

segmentation prediction. 

In this study, we utilize Dice loss as the 

objective function in the optimization process as 

suggested in the original work [7]: 

𝐷 =
2 ∑ 𝑝𝑖 𝑔𝑖

𝑁
𝑖

∑ 𝑝𝑖
2𝑁

𝑖 + ∑ 𝑔𝑖
2𝑁

𝑖

 (2) 

where 𝑝𝑖 and 𝑔𝑖 are voxel values, either being 1 

or 0, of the predicted liver segmentation and the 

ground truth, correspondingly, and N is the 

number of voxels of the two images in the same 

size.  

 DRIU: Deep retinal image 

understanding 

DRIU was introduced by Bellver et al. 

(2017) to segment the liver in abdominal contrast 

enhanced CT images [6]. The network 

architecture utilizes VGG-16 as the back-bone 

network, removes the last classification layers, 

i.e. the fully-connected layers, while it still 

maintains other layers such as fully 

convolutional layers, ReLU active function and 

max-pooling layers. Similar to U-net, the DRIU 

architecture includes a contracting part and an 

expanding part those contain several paired 

convolutional layers having the same size of 

feature map. The main difference from U-net is 

that the feature map at each level of expanding 

part is achieved by up-sampling the feature map 

in the lower layer from contracting part. In 

addition, in the expanding path, the output of 

DRIU is a combination all feature maps at 

multiple scales by rescaling them to the original 

image size and then adding them up into a single 

image. Thus, the segmentation contains 

information of the liver at multiscale 

representation of the image. 

We also used weighted Binary Cross 

Entropy loss function for the optimization 

process as the following: 

𝐶𝐸 =  −
1

𝑁
∑ 𝑤𝑖𝑡𝑖 log(𝑠𝑖)

𝑁

𝑖

 (4) 

2.2. Largest connected component (LCC) 

In order to remove isolated regions of false 

segmentations of the liver, we propose to apply 

a connected component algorithm in the post 

processing stage. We first apply a 3D connected 

component labeling algorithm [22], and then we 

perform a full searching for the largest connected 

component. Note that the number of connected 

components should be not that many and the 

liver segmentation component should be the 

largest one because the liver is the largest organ 

in the abdominal. In addition, in case that the 

largest component is not the liver, the neural 

network did not perform well and the 

segmentation should be treated as failed case. 

 
The pseudocode is as follows: 
algorithm LCC(segmentation) 

labels = list of connected component of segmentation 

LCC_label = 0 

Largest_CC_size = 0 

for label in labels: 

if volume of label is larger than largest_CC_size 

  largest_CC_label = label 

  largest_CC_size = volume of label 

Largest_LCC_segmentation = segmentation labeled by LCC_label 

return Largest_LCC_segmentation 

 

3. Data and Experiment setup  

3.1. Clinical Data 

In this study, we performed experiments 

using four datasets of CT images as in our 

previous study [29] which contains several 

variants of liver CT images: contrast enhanced, 

low-dose contrast enhanced, and low-dose non-

contrast enhanced CT images. All of the 

confidential information in the datasets were 

anonymized by their own medical centers before 
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taking part in this study. The parameter of the 

datasets are summarized in the Table 1. 

The first dataset contains 115 contrast 

enhanced CT images from the Liver Tumour 

Segmentation (LiTS) challenge in MICCAI 

grand challenge [34]. The images were acquired 

on a variety of CT scanners and protocols from 

multiple medical centers. We used LiTS dataset 

for training the three CNN models as similar in 

Bellver et al. (2017) [6].  

The second dataset is 10 CT images from the 

Mayo Clinic (Mayo) which were acquired by a 

Siemens CT scanner under a typical scanning 

protocol. The images are contrast enhanced 

portal-venous phase, and include several 

primary liver tumors. In order to reduce the 

redundant slices, the images were manually 

cropped in the z dimension such that the liver 

region is preserved.   

The third and the fourth dataset are 15 

contrast enhanced (EMC_LD) and 15 non-

contrast enhanced CT images (EMC_NC_LD) 

correspondingly, which were randomly selected 

from Erasmus MC PACS in 2014 [27]. The 

images were acquired during radio frequency 

ablation intervention under low-dose protocol, 

resulting in noisy images due to the low radiation 

dose (see Figure 4).  

The datasets from Erasmus MC and Mayo 

were manually annotated by two experts for 

ground truth, which is used in the evaluation 

sections in this study, while the dataset from 

LiTS challenge already is publicly available with 

the liver segmentation ground truth segmented 

by several experts. 
 

Table 1. Parameters of the datasets in the study. 

Dataset Number of 

data 

Resolution 

(mm) 

Spacing 

(mm) 

Number of 

slices 

Voltage 

(kVP) 

CTDIvol 

(mGy) 

LiTS 115 0.55 - 1.0 0.45 - 6.0 74 - 986 - - 

Mayo 10 0.64 - 0.84 3.0 46 - 112 100 18 - 21 

EMC_LD 15 0.56 - 0.89 2 - 5 27 -68 80 - 120 4 - 12 

EMC_NC_LD 15 0.56 - 0.89 5 21 - 89 80 - 120 4 - 9 

 

3.2. Implementation 

We implemented the algorithms in Python 3 

using Tensorflow 1.18 and CUDA 9.1.  The 

original source code for the FCN-CRF network, 

and the trained model from [2] are reused and 

modified to obtain a complete process of 3D 

liver segmentation. V-net and its trained model 

on the same LiTS dataset were reimplemented 

and based on the source code and introduction 

from Chen’s website 

https://github.com/junqiangchen/LiTS—

LiverTumor-Segmentation-Challenge. The 

DRIU network model was fine-tuned trainning 

using the pretrained model from Bellver et al [6]. 

The parameter settings were as suggested in the 

original work, with the batch size of 1; 15000 to 

50000 iterations for a single channel; the initial 

learning rate of 10-8; and SGD optimizer with 

momentum.  

The LCC method was implemented in 

Python 3, using SITK library for connected 

components extraction. For further studies, the 

source code for the LCC method is publicly 

available at 

https://github.com/kennyha85/Liver-

segmentation. 

The study was carried on a Linux PC, 

Ubuntu 16.04, with Intel Core i9 9900K CPU, 8 

cores, 3.6-5 GHz; NVIDIA Titan V GPU (11 GB 

RAM version), 64 GB DDR4, 2133 MHz Bus. 

4. Evaluation and result 

4.1. Evaluation metrics 

In this study, we assess the performance of 

the combination of the CNNs with connected 

components using several criteria introduced in 

the MICCAI grand challenges. The algorithms 

yield binary liver segmentations, which are 

compared to the ground truths using Dice Score 

https://github.com/junqiangchen/LiTS—LiverTumor-Segmentation-Challenge
https://github.com/junqiangchen/LiTS—LiverTumor-Segmentation-Challenge
https://github.com/kennyha85/Liver-segmentation
https://github.com/kennyha85/Liver-segmentation
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(DSC), Mean Surface Distance (MSD), 

Hausdoff Distance (HD), and False Positive 

Rate (FPR). In addition, we also evaluate the 

processing time of the methods. The evaluation 

metrics are described in more detail below. 

4.1.1 Dice score (DSC) 

Dice score is the overlap of the liver 

segmentation and the ground truth. Given a liver 

segmentation X and the ground truth Y, DSC can 

be computed as: 

𝑫𝑺𝑪 =  
2|𝑿 ∩ 𝒀|

|𝑿 ∪ 𝒀|
 (5) 

 

The maximum value of DSC is 1, when the 

segmentation X is perfectly matched the ground 

truth Y. The DSC is 0 when X and Y do not have 

any voxel in common. 

4.1.2 Mean Surface Distance (MSD) 

Let S(X) denotes the set of surface voxels of 

the segmentation X. The shortest distance of a 

voxel y to S(X) is defined as: 
 

𝑑(𝑦, 𝑺(𝑿)) = 𝑚𝑖𝑛𝑥∈𝑆(𝑋)‖𝑦 − 𝑥‖ (6) 

      

where ‖. ‖ denotes the Euclidean distance. 

Then MSD is then computed by: 
𝑑𝑴𝑺𝑫(𝑿, 𝒀) = 

1

|𝑆(𝑋)|+|𝑆(𝑌)|
(∑ 𝑑(𝑥, 𝑺(𝒀))𝑥∈𝑆(𝑋) + ∑ 𝑑(𝑦, 𝑺(𝑿))𝑦∈𝑆(𝑌) ) 

                               (7) 

4.1.3 Hausdorff Distance (HD) 

Let S(X) and S(Y) be two boundaries of liver 

segmentation and ground truth, respectively. The 

Hausdorff distance dHD(S(X),S(Y)) is the 

maximum distance between S(X) and S(Y), and 

is computed as follows:  
d𝑯𝑫(𝑺(𝑿), 𝑺(𝒀)) =

max{supx∈S(X) infy∈S(Y) d(x, y), supy∈S(Y)infx∈S(X) d(x, y)} 

                                                (8) 

where sup represents 

the supremum and inf  denotes the infimum. 

4.1.4 False Positive Rate (FPR) 

FPR is used to quantify the false positive 

segmentation i.e. the segmentation outside the 

ground truth. Given the segmentation X and the 

ground truth Y, FPR of the segmentation can be 

computed as the following: 

𝑭𝑷𝑹(𝑿, 𝒀)  =  
|𝑿\𝒀|

|𝒀|
  (9) 

where |X\Y| denotes number of voxels in X 

which do not overlap with Y. 

 
4.2. Quantitative Results 

 
The median values of the evaluation scores 

of the liver segmentation predicted by using the 

three CNNs architecture combined with LCC 

algorithm are summarized in the Table 2. All of 

the three CNNs successfully segmented the liver 

in the Mayo and the EMC_LD dataset with Dice 

scores higher than 80% for every dataset. For the 

EMC_NC_LD dataset, each of CNNs had failed 

in segmenting one of the images, achieving Dice 

scores less than 50%. We use 50% to decide the 

threshold for failed cases. Based on Table 2, we 

can conclude that V-net + LCC performed the 

best with the medians of the Dice scores are 

larger than 90%. Note that 90% Dice score is the 

threshold for success used in other applications 

[14]. The minimum and maximum processing 

times, corresponding to the image size, are also 

reported in the last column of Table 2. Based on 

the statistic, we can conclude that the 

DRIU+LCC runs literately faster than V-net + 

LCC. Furthermore, LCC took less than a second 

for refining segmentations by the three CNNs. 

The maximum total processing time suggests the 

largest adding time that radiology technicians 

may have to take into account when they 

combine the methods to other processes. Note 

that the CT images were cropped to reduce the 

redundancy in a data preparation step (See 

section 3.1 Clincal Data). 
 

 
Table 2:  
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Median values of evaluation scores of LCC   combined with the three CNN architectures. The last column are 

the minimum and maximum processing times. The bold number indicate that they are the best scores.

Dataset Methods DSC (%) HD (mm) MSD (mm) FPR (%) 
Processing 

time (s) 

Mayo 

FCN+CRF+LCC 92.3 63.4 4.4 3.1 7 - 8.2 

DRIU+LCC 92.6 34.6 2.2 8.1 5.6 – 6.1 

Vnet+LCC 93.8 25.3 1.6 6.7 6.6 - 9.8 

EMC_LD 

FCN+CRF+LCC 86.0 35.1 2.5 13.5 3.1 – 6.4 

DRIU+LCC 84.7 42.0 2.4 14.9 2.6 – 5.3 

Vnet+LCC 90.4 38.2 2.0 14.2 4.2 - 8.6 

EMC_NC_LD 

FCN+CRF+LCC 81.9 51.5 3.6 23.3 3.6 – 7.7 

DRIU+LCC 87.2 66.1 4.9 8.8 2.6 – 6.8 

Vnet+LCC 90.3 51.7 2.2 7.8 2.9 - 8.4 

 
Figure 3: DICE scores of the three CNNs with and without LCC on the three datasets. The brief notations are 

descried as the followings: FM (FCN+CRF on Mayo dataset), FM_LC (FCN+CRF with LCC on Mayo dataset), 

DM (DRIU on Mayo dataset), DM_LC (DRIU with LCC on Mayo dataset), VM (Vnet on Mayo dataset), VM_LC 

(Vnet with LCC on Mayo dataset), FEL (FCN+CRF on EMC Lowdose dataset), FEL_LC (FCN+CRF with LCC 

on EMC Lowdose dataset), DEL ( DRIU on EMC Lowdose dataset), DEL_LC (DRIU with LCC on EMC 

Lowdose dataset), VEL (Vnet on EMC Lowdose dataset), VEL_LC (Vnet with LCC on EMC Lowdose dataset), 

FEN (FCN+CRF on EMC Lowdose Non-contrast enhanced dataset), FEN_LC (FCN+CRF with LCC on EMC 

Lowdose Non-contrast enhanced dataset ), DEN (DRIU on EMC Lowdose Non-contrast enhanced dataset), 

DEN_LC (DRIU with LCC on EMC Lowdose Non-contrast enhanced dataset), VEN (Vnet on EMC Lowdose 

Non-contrast enhanced dataset), VEN_LC (Vnet with LCC on EMC Lowdose Non-contrast enhanced dataset). 

 
Figure 3 is a box plot of the segmentation 

Dice scores of all of three CNNs on the three 

datasets with and without applying LCC 

algorithm. Furthermore, we performed paired t-

tests to assess the statistical significance of the 

difference between the results of the CNNs with 

and without using the connected components 

method. The p-values of the t-tests for the 

evaluations scores of the pairs FM/FM_LC, 

DM/DM_LC, VM/VM_LV, FEL/FEL_LC, 

DEL/DEL_LC, VEL/VEL_LC, PEN/PEN_LC, 

DEN/DEN_LC and VEN/VEN_LC are 

summarized in Table 3. From Table 3, we can 

conclude that LCC algorithm statistically 

significantly improves the segmentation results 

of all three CNNs in general. 

The Figure 4 is an example of 3D liver 

segmentations on a low-dose contrast enhanced 

CT image. It can be seen in the second column 

that liver segmentations by three CNNs include 
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some false positive segmentations (in blue) 

which are eliminated by LCC algorithm. 

Obviously, the difference in segmentation from 

three networks is not visible in the 2D view 

(right column). The 3D view in the first column 

visualizes the difference between the liver 

segmentations and the ground truth. 

 
Table 3 

p-values of  the  T-tests for the proposed method with the   corresponding original CNNs: The numbers are 

smaller than 0.05 indicating that the improvements are statistically significance.

Dataset Methods DSC HD  MSD  FPR  

Mayo 

FM/FM_LC 0.021 0.019 0.002 0.001 

DM/DM_LC 0.002 < 10-3 < 10-3 < 10-3 

VM/VM_LC 0.040 0.001 0.014 0.019 

EMC_LD 

FEL/FEL_LC 0.010 < 10-3 < 10-3 < 10-3 

DEL/DEL_LC 0.016 < 10-3 < 10-3 0.118 

VEL/VEL_LC 0.027 < 10-3 < 10-3 < 10-3 

EMC_NC_LD 

FEN/FEN_LC 0.034 < 10-3 < 10-3 < 10-3 

DEN/DEN_LC 0.055 < 10-3 < 10-3 < 10-3 

VEN/VEN_LC 0.019 < 10-3 < 10-3 < 10-3 

 

5. Discussion 

In this study, we investigated the 

improvement in liver segmentation using CNNs 

approaches on CT images when they are 

combined with a connected component 

algorithm and selection of the largest component 

in a post-processing step.  We either 

reimplemented or reused the CNNs model 

trained with the LiTS dataset, and tested them 

with other three datasets from two different 

medical centers with both standard and low dose 

protocols with and without contrast 

enhancement. Next, we applied LCC algorithm 

on the liver segmentations by the CNNs 

approaches and quantitatively evaluated the 

results using well-known criteria for liver 

segmentation evaluation. 

Combination of the CNN approaches with 

LCC algorithm statistically significantly 

improved the liver segmentation. The 3D 

visualization in the Figure 4 shows the 

improvements in a segmentation example. We 

also conclude that the FCN combined with 

conditional random forest method does not fully 

eliminate the isolated false positive 

segmentation. This can be explained by the fact 

that the CRF only looks at inter-slice correlation 

of the segmentations, while the liver 

segmentation should be connected in 3D as one 

organ. From Figure 3, we can also conclude that 

the CNNs work better with the regular dose 

contrast enhanced CT images; most 

improvements occur with the low-dose CT 

image. This may improve when including more 

low dose images in the training. We refrained 

from doing so. In our opinion, while retraining 

CNNs network is a very “expensive” way of 

research, reusing the shared works and 

improving the result using “inexpensive” 

techniques is a reasonable approach to bring the 

research results to the practical application. 
We also can see from Table 2 and Figure 3 

that V-net combined with LCC generally 

performed better than the other methods. This 

result confirms results of Milletari et al. (2016) 

[7], showing that 3D segmentation approaches 

use inter-slice information and thus may 

improve the segmentation accuracy. However, 

Table 2 also illustrates that the 3D nature of the 

V-net leads to more computation time. In 

addition, there is more memory required when 

using this CNN. These factors may limit its 

potential to be used in clinical practices that 

require very fast processing such as intra 
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operation of liver RFA. Note that in our 

experiment, we already manual cropped the liver 

volume to avoid the redundancy while current 

CT scans in clinical practice may have hundreds 

of slices. A fast, automatic liver detection 

method may be beneficial for those cases to 

extract the region of interest the liver while 

reducing the processing time.  

Figure 4: Example of 3D liver segmentations by the three CNNs on a low-dose contrast enhanced CT image. 

The first raw is segmentations by FCN, the second one is by DRIU and the last one is by V-net. The first column 

contains the liver segmentations using with LCC (green) and the ground truth (red), the second column 

illustrates the raw liver segmentation from the CNNs (blue) overlapped by the segmentation after post 

processing, and the last column is the final 2D liver segmentations on 2D CT slice of the liver 

 

Although LCC showed to be effective for 

liver segmentation, it does not solve all 

problems. LCC can only remove false positive 

segmentations, which are isolated to the main 

liver segmentation, and thus it cannot get rid of 

false positive segmentations connected with the 

main part, or fill in missing parts. Some more 

advanced segmentation methods, such as level 

set and graph-cuts, may further improve the 

smoothing on the surface of the liver, as these 

methods are able to embed and model liver shape 

and curvature information. The precise liver 
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surface segmentation thus remains a topic for 

further studies. Subsequent studies may, e.g. 

utilized more data in the training stage. We 

strongly believe that data sharing is a relevant for 

this. Currently, while data sharing still is difficult 

because of administrative procedures and 

privacy concerns, data-augmentation research 

directions could help enrich the training data 

pools. 

There are some limitations in our study. 

First, we only used 10 contrast enhanced CT, 15 

low-dose contrast enhanced CT and 15 low-dose 

non-contrast enhanced CT from two medical 

centers for evaluating the methods. 

Nevertheless, we assume that the images from 

other medical centers will yield the similar 

results in this study. Second, the training dataset 

for the CNNs does not include low-dose CT 

images, which led to the poor performance with 

the EMC dataset. However, while investigating 

to improve the CNNs with more dataset in the 

training stage is not our main purpose of this 

research, we believe that adding low-dose CT 

image may improve the segmentation results but 

not that much because the low-dose noise 

absolutely affects the image quality. A noise 

removal CNN network combining with the 

current CNNs may be a good approach to 

improve the liver segmentation. Third, there 

have been several other variants of CNNs for 

liver segmentation already published and 

achieving good results [4,18,19,23,24,25]. Yet, 

these CNN approaches are pixel classification 

based methods and thus they may contain mis-

classification parts and may likely benefit as well 

from post processing methods such as LCC. 

 
6. Conclusion 

In this paper, we presented a work on 

improving liver segmentation for CNN based 

approaches using LCC algorithm. Experiments 

were performed with three well-known CNN 

architectures and with retrained or reused trained 

models. We perform the evaluation on three 

datasets from two different medical centers with 

regular contrast enhanced CT image and both 

contrast and non-contrast enchantment of low 

dose image. The quantitative evaluation results 

show that LCC statistically significantly 

improves the liver segmentation accuracy of the 

CNNs while maintaining the processing time 

less than 10 seconds in total for all of the 

networks with the LCC processing time of less 

than a second. In our study, we found that V-net 

combined with LCC achieved a Dice score of 

approximately 94%, which is comparable to 

other state of the art methods. We believe with 

the current development of CNN-based 

approach researches, the liver segmentation 

using CNNs has a high potential to be applied in 

the clinical practice soon. 
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