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Abstract

We study a Horn fragment called Horn-RegI of the regular description logic with inverse RegI , which extends the
description logic ALC with inverse roles and regular role inclusion axioms characterized by finite automata. In
contrast to the well-known Horn fragments EL, DL-Lite, DLP, Horn-SHIQ and Horn-SROIQ of description
logics, Horn-RegI allows a form of the concept constructor “universal restriction” to appear at the left hand side
of terminological inclusion axioms, while still has PTime data complexity. Namely, a universal restriction can be
used in such places in conjunction with the corresponding existential restriction. We provide an algorithm with
PTime data complexity for checking satisfiability of Horn-RegI knowledge bases.
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1. Introduction

Description logics (DLs) are variants of modal
logics suitable for expressing terminological
knowledge. They represent the domain of interest
in terms of individuals (objects), concepts and
roles. A concept stands for a set of individuals,
a role stands for a binary relation between
individuals. The DL SROIQ [1] founds the
logical base of the Web Ontology Language
OWL 2, which was recommended by W3C as a
layer for the architecture of the Semantic Web.

As reasoning in SROIQ has a very high
complexity, W3C also recommended the profiles
OWL 2 EL, OWL 2 QL and OWL 2 RL, which
are based on the families of DLs EL [2, 3], DL-
Lite [4, 5] and DLP [6]. These families of DLs
are monotonic rule languages enjoying PTime
data complexity. They are defined by selecting

suitable Horn fragments of the corresponding full
languages with appropriate restrictions adopted to
eliminate nondeterminism. A number of Horn
fragments of DLs with PTime data complexity
have also been investigated in [7, 8, 9, 10,
11, 12, 13]. The combined complexities of
Horn fragments of DLs were studied, amongst
others, in [14]. Some Horn fragments of DLs
without ABoxes that have PTime complexity have
also been studied in [15, 2]. The fragments
Horn-SHIQ [7, 11] and Horn-SROIQ [13] are
notable, with considerable rich sets of allowed
constructors and features. Combinations of rule
languages like Datalog or its extensions with DLs
have also been widely studied.

To eliminate nondeterminism, all EL [2, 3],
DL-Lite [4, 5], DLP [6], Horn-SHIQ [7] and
Horn-SROIQ [13] disallow (any form of) the
universal restriction ∀R.C at the left hand side
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of v in terminological axioms. The problem is
that the general Horn fragment of the basic DL
ALC allowing ∀R.C at the left hand side of v has
NP-complete data complexity [12]. Also, roles
are not required to be serial (i.e., satisfying the
condition ∀x∃y R(x, y)), which complicates the
construction of logically least models.

For many application domains, the profiles
OWL 2 EL, OWL 2 QL and OWL 2 RL languages
and the underlying Horn fragments EL, DL-Lite,
DLP seem satisfactory. However, in general,
forbidding ∀R.C at the left hand side of v in
terminological axioms is a serious restriction.

In [16] Nguyen introduced the deterministic
Horn fragment of ALC, where the constructor
∀R.C is allowed at the left hand side of v
in the combination with ∃R.C (in the form
∀R.C u ∃R.C, denoted by ∀∃R.C [15]). He
proved that such a fragment has PTime data
complexity by providing a bottom-up method for
constructing a logically least pseudo-model for
a given deterministic positive knowledge base
in the restricted language. In [12] Nguyen
applied the method of [16] to regular DL Reg,
which extends ALC with regular role inclusion
axioms characterized by finite automata. Let
us denote the Horn fragment of Reg that allows
the constructor ∀∃R.C at the left hand side
of v by Horn-Reg. As not every positive
Horn-Reg knowledge base has a logically least
model, Nguyen [12] proposed to approximate the
instance checking problem in Horn-Reg by using
its weakenings with PTime data complexity.

To see the usefulness of the constructor ∀∃R.C
at the left hand side of v in terminological
axioms, note that the following axioms are very
intuitive and similar axioms are desirable:

∀∃hasChild.Happy v HappyParent
∀∃hasChild.Male v ParentWithOnlySons
∀∃hasChild.Female v ParentWithOnlyDaughters

interesting u ∀∃path.interesting v perfect
interesting t ∀∃link.interesting v worth surfing.

The works [16, 12] found a starting point for
the research concerning the universal restriction
∀R.C at the left hand side of v in terminological

axioms guaranteeing PTime data complexity.
However, a big challenge is faced: the bottom-up
approach is used, but not every positive Horn-Reg
knowledge base has a logically least model. As
a consequence, the work [12] on Horn-Reg is
already complicated and the problem whether
Horn-Reg has PTime data complexity remained
open until [17].

This paper is a revised and extended version
of our conference paper [17]. In this work
we study a Horn fragment called Horn-RegI of
the regular description logic with inverse RegI .
This fragment extends Horn-Reg with inverse
roles. In contrast to the well-known Horn
fragments EL, DL-Lite, DLP, Horn-SHIQ and
Horn-SROIQ of description logics, Horn-RegI

allows the concept constructor ∀∃R.C to appear
at the left hand side of terminological inclusion
axioms. We provide an algorithm with PTime
data complexity for checking satisfiability of
Horn-RegI knowledge bases. The key idea is to
follow the top-down approach1 and use a special
technique to deal with non-seriality of roles.

The DL RegI (resp. Reg) is a variant of
regular grammar logic with (resp. without)
converse [18, 19, 20, 21]. The current work
is based on the previous works [16, 12, 22].
Namely, [22] considers Horn fragments of serial
regular grammar logics with converse. The
current work exploits the technique of [22] in
dealing with converse (like inverse roles), but the
difference is that it concerns non-serial regular
DL with inverse roles. The change from grammar
logic (i.e., modal logic) to DL is syntactic,
but may increase the readability for the DL
community.

The main achievements of the current paper are
that:

• it overcomes the difficulties encountered
in [16, 12] by using the top-down rather
than bottom-up approach, and thus enables
to show that both Horn-Reg and Horn-RegI

1In the top-down approach, the considered query is
negated and added into the knowledge base, and in general,
a knowledge base may contain “negative” constraints.
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have PTime data complexity, solving an open
problem of [12];

• the technique introduced in the current paper
for dealing with non-seriality leads to a
solution for the important issue of allowing
the concept constructor ∀∃R.C to appear at
the left hand side of v in terminological
inclusion axioms.

In comparison with [17], note that:

• Our algorithm now allows expansion rules
to be applied in an arbitrary order. That is,
any strategy can be used for expanding the
constructed graph. This gives flexibility for
optimizing the computation.

• The current paper provides full proofs for
the results as well as additional examples
and explanations.

The rest of this paper is structured as follows.
In Section 2 we present notation and semantics
of RegI and recall automaton-modal operators. In
Section 3 we define the Horn-RegI fragment. In
Section 4 we present our algorithm of checking
satisfiability of Horn-RegI knowledge bases and
discuss our technique of dealing with ∀∃R.C at
the left hand side of v. In Section 5 we give
proofs for the properties of the algorithm. We
conclude this work in Section 6.

2. Preliminaries

2.1. Notation and Semantics of RegI

Our language uses a countable set C of concept
names, a countable set R+ of role names, and
a countable set I of individual names. We use
letters like a, b to denote individual names, letters
like A, B to denote concept names, and letters like
r, s to denote role names.

For r ∈ R+, we call the expression r the inverse
of r. Let R− = {r | r ∈ R+} and R = R+ ∪ R−.
For R = r, let R stand for r. We call elements of
R roles and use letters like R, S to denote them.

A context-free semi-Thue system S over R is
a finite set of context-free production rules over
alphabet R. It is symmetric if, for every rule

R → S 1 . . . S k of S, the rule R → S k . . . S 1 is
also in S.2 It is regular if, for every R ∈ R, the
set of words derivable from R using the system is
a regular language over R.

A context-free semi-Thue system is like a
context-free grammar, but it has no designated
start symbol and there is no distinction between
terminal and non-terminal symbols. We assume
that, for R ∈ R, the word R is derivable from R
using such a system.

A role inclusion axiom (RIA for short) is an
expression of the form S 1 ◦ · · · ◦ S k v R, where
k ≥ 0. In the case k = 0, the left hand side of the
inclusion axiom stands for the empty word ε.

A regular RBox R is a finite set of RIAs such
that

{R→ S 1 . . . S k | (S 1 ◦ · · · ◦ S k v R) ∈ R}

is a symmetric regular semi-Thue system S over
R. We assume that R is given together with a
mapping A that associates every R ∈ R with
a finite automaton AR recognizing the words
derivable from R using S. We call A the RIA-
automaton-specification of R.

Recall that a finite automaton A over alphabet
R is a tuple 〈R,Q, q0, δ, F〉, where Q is a finite
set of states, q0 ∈ Q is the initial state, δ ⊆ Q ×
R × Q is the transition relation, and F ⊆ Q is
the set of accepting states. A run of A on a word
R1 . . .Rk over alphabet R is a finite sequence of
states q0, q1, . . . , qk such that δ(qi−1,Ri, qi) holds
for every 1 ≤ i ≤ k. It is an accepting run if qk ∈

F. We say that A accepts a word w if there exists
an accepting run of A on w.

Example 1. Let R = {r ◦ r v r, r ◦ r v
r}. The symmetric regular semi-Thue system
corresponding to R is

S = {r → rr, r → rr}.

The set of words derivable from r (resp. r) using
S is a regular language characterized by the
regular expression r ∪ (r; (r ∪ r)∗; r) (resp. r ∪
(r; (r∪r)∗; r)). Hence, R is a regular RBox, whose
RIA-automaton-specification A is specified by:

2In the case k = 0, the right hand sides of the rules stand
for ε.
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Ar = 〈R, {0, 1, 2}, 0, {〈0, r, 1〉, 〈0, r, 2〉, 〈2, r, 2〉,
〈2, r, 2〉, 〈2, r, 1〉}, {1}〉

Ar = 〈R, {0, 1, 2}, 0, {〈0, r, 1〉, 〈0, r, 2〉, 〈2, r, 2〉,
〈2, r, 2〉, 〈2, r, 1〉}, {1}〉.

Observe that every regular set of RIAs in
SROIQ [1] and Horn-SROIQ [13] is a regular
RBox by our definition. However, the above
RBox R shows that the converse does not hold.
Roughly speaking using the notion of regular
expressions, “regularity” of a set of RIAs in
SROIQ [1] and Horn-SROIQ [13] allows only
a bounded nesting depth of the star operator
∗, while “regularity” of a regular RBox in
Horn-RegI is not so restricted. That is, our notion
of regular RBox is more general than the notion
of regular set of RIAs in SROIQ [1] and Horn-
SROIQ [13]. C

Let R be a regular RBox and A be its RIA-
automaton-specification. For R, S ∈ R, we say
that R is a subrole of S w.r.t. R, denoted by
R vR S , if the word R is accepted by AS .

Concepts are defined by the following BNF
grammar, where A ∈ C, R ∈ R:

C ::= > | ⊥ | A | ¬C | C uC | C tC | ∀R.C | ∃R.C

We use letters like C, D to denote concepts
(including complex concepts).

A TBox is a finite set of TBox axioms of the
form C v D. An ABox is a finite set of assertions
of the form C(a) or r(a, b). A knowledge base is
a tuple 〈R,T ,A〉, where R is a regular RBox, T
is a TBox andA is an ABox.

An interpretation is a pair I = 〈∆I, ·I〉, where
∆I is a non-empty set called the domain of I and
·I is a mapping called the interpretation function
of I that associates each individual name a ∈ I
with an element aI ∈ ∆I, each concept name A ∈
C with a set AI ⊆ ∆I, and each role name r ∈ R+

with a binary relation rI ⊆ ∆I × ∆I.
Define

(r)I = (rI)−1 = {〈y, x〉 | 〈x, y〉 ∈ rI}
(for r ∈ R+)

εI = {〈x, x〉 | x ∈ ∆I}.

The interpretation function ·I is extended to
complex concepts as follows:

>I = ∆I, ⊥I = ∅, (¬C)I = ∆I \CI,

(C u D)I = CI ∩ DI, (C t D)I = CI ∪ DI,

(∀R.C)I = {x ∈ ∆I | ∀y (〈x, y〉 ∈ RI ⇒ y ∈ CI)},

(∃R.C)I = {x ∈ ∆I | ∃y (〈x, y〉 ∈ RI ∧ y ∈ CI)}.

Given an interpretation I and an
axiom/assertion ϕ, the satisfaction relation
I |= ϕ is defined as follows, where ◦ at the
right hand side of “if” stands for composition of
relations:

I |= S 1 ◦ · · · ◦ S k v R if S I1 ◦ · · · ◦ S Ik ⊆ RI

I |= ε v R if εI v RI

I |= C v D if CI ⊆ DI

I |= C(a) if aI ∈ CI

I |= r(a, b) if 〈aI, bI〉 ∈ rI.

If I |= ϕ then we say that I validates ϕ.
An interpretation I is a model of an RBox R,

a TBox T or an ABox A if it validates all the
axioms/assertions of that “box”. It is a model of
a knowledge base 〈R,T ,A〉 if it is a model of all
R, T andA.

A knowledge base is satisfiable if it has a
model. For a knowledge base KB, we write KB |=
ϕ to mean that every model of KB validates ϕ. If
KB |= C(a) then we say that a is an instance of C
w.r.t. KB.

2.2. Automaton-Modal Operators

Given an interpretation I and a finite
automaton A over alphabet R, define AI =

{〈x, y〉 ∈ ∆I × ∆I | there exist a word R1 . . .Rk

accepted by A and elements x0 = x, x1, . . . , xk = y
of ∆I such that 〈xi−1, xi〉 ∈ RIi for all 1 ≤ i ≤ k}.

We will use auxiliary modal operators [A]
and 〈A〉, where A is a finite automaton over
alphabet R. We call [A] (resp. 〈A〉) a universal
(resp. existential) automaton-modal operator.
Automaton-modal operators were used earlier,
among others, in [23, 20, 24, 25, 12].
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In the extended language, if C is a concept then
[A]C and 〈A〉C are also concepts. The semantics
of [A]C and 〈A〉C are defined as follows:

([A]C)I =
{
x ∈ ∆I | ∀y

(
〈x, y〉 ∈ AI implies y ∈ CI

)}
(〈A〉C)I =

{
x ∈ ∆I | ∃y

(
〈x, y〉 ∈ AI and y ∈ CI

)}
.

For a finite automaton A over R, let the
components of A be denoted as in the following:

A = 〈R,QA, qA, δA, FA〉.

If q is a state of a finite automaton A then by
Aq we denote the finite automaton obtained from
A by replacing the initial state by q.

Lemma 1. Let I be a model of a regular RBox
R, A be the RIA-automaton-specification of R, C
be a concept, and R ∈ R. Then:

1. (∀R.C)I = ([AR]C)I,
2. (∃R.C)I = (〈AR〉C)I,
3. CI ⊆ ([AR]〈AR〉C)I,
4. CI ⊆ ([AR]∃R.C)I.

Proof: The first assertion holds because the
following conditions are equivalent:

• x ∈ (∀R.C)I;

• for all y ∈ ∆I, if 〈x, y〉 ∈ RI then y ∈ CI;

• for all y ∈ ∆I, if 〈x, y〉 ∈ (AR)I then y ∈ CI;

• x ∈ ([AR]C)I.

Analogously, the second assertion holds.
Consider the third assertion and suppose x ∈

CI. We show that x ∈ ([AR]〈AR〉C)I. Let y
be an arbitrary element of ∆I such that 〈x, y〉 ∈
(AR)I. By definition, there exist a word R1 . . .Rk

accepted by AR and elements x0 = x, x1, . . . ,
xk = y of ∆I such that 〈xi−1, xi〉 ∈ RIi for all
1 ≤ i ≤ k. Observe that the word Rk . . .R1 is
accepted by AR. Since x ∈ CI, xk = y, x0 = x
and 〈xi, xi−1〉 ∈ R

I

i for all k ≥ i ≥ 1, we have that
y ∈ (〈AR〉C)I. Therefore, x ∈ ([AR]〈AR〉C)I.

The fourth assertion directly follows from the
third and second assertions. C

3. The Horn-RegI Fragment

Let ∀∃R.C stand for ∀R.C u ∃R.C. Left-hand-
side Horn-RegI concepts, called LHS Horn-RegI

concepts for short, are defined by the following
grammar, where A ∈ C and R ∈ R:

C ::= > | A | C uC | C tC | ∀∃R.C | ∃R.C

Right-hand-side Horn-RegI concepts, called
RHS Horn-RegI concepts for short, are defined
by the following BNF grammar, where A ∈ C, D
is an LHS Horn-RegI concept, and R ∈ R:

C ::= > | ⊥ | A | ¬D | C uC | ¬D tC | ∀R.C | ∃R.C

A Horn-RegI TBox axiom, is an expression of
the form C v D, where C is an LHS Horn-RegI

concept and D is an RHS Horn-RegI concept.
A Horn-RegI TBox is a finite set of Horn-RegI

TBox axioms.
A Horn-RegI clause is a Horn-RegI TBox

axiom of the form C1 u . . . u Ck v D or > v D,
where:

• each Ci is of the form A, ∀∃R.A or ∃R.A,

• D is of the form ⊥, A, ∀R.A or ∃R.A,

• k ≥ 1, A ∈ C and R ∈ R.

A clausal Horn-RegI TBox is a TBox
consisting of Horn-RegI clauses.

A Horn-RegI ABox is a finite set of assertions
of the form C(a) or r(a, b), where C is an RHS
Horn-RegI concept. A reduced ABox is a finite
set of assertions of the form A(a) or r(a, b).

A knowledge base 〈R,T ,A〉 is called a
Horn-RegI knowledge base if T is a Horn-RegI

TBox and A is a Horn-RegI ABox. When T is
a clausal Horn-RegI TBox and A is a reduced
ABox, we call such a knowledge base a clausal
Horn-RegI knowledge base.

Example 2. This example is about Web pages.
Let R+ = {link, path} and let R be the regular
RBox consisting of the following role axioms:

link v path, link v path,

link ◦ path v path, path ◦ link v path.
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This RBox “defines” path to be the transitive
closure of link. As the RIA-automaton-
specification of R we can take the mapping A
such that:

Alink = 〈R, {1, 2}, 1, {〈1, link, 2〉}, {2}〉,

Alink = 〈R, {1, 2}, 2, {〈2, link, 1〉}, {1}〉,
Apath = 〈R, {1, 2}, 1,

{〈1, link, 1〉, 〈1, link, 2〉, 〈1, path, 2〉}, {2}〉,
Apath = 〈R, {1, 2}, 2,

{〈1, link, 1〉, 〈2, link, 1〉, 〈2, path, 1〉}, {1}〉.

Let T be the TBox consisting of the following
program clauses:

perfect v interesting u ∀path.interesting
interesting u ∀∃path.interesting v perfect
interesting t ∀∃link.interesting v worth surfing.

Let A be the ABox specified by the concept
assertion perfect(b) and the following role
assertions of link:

a

����������

��

b

����������

��=======

c

����������
e

����������
f

��========

g h i

kk

Then KB = 〈R,T ,A〉 is a Horn-RegI

knowledge base. (Ignoring link and path, which
are not essential in this example, KB can be
treated as a Horn-Reg knowledge base.) It
can be seen that b, e, f , i are instances of
the concepts perfect, interesting, worth surfing
w.r.t. KB. Furthermore, h is also an instance of
the concept interesting w.r.t. KB. C

The length of a concept, an assertion or an
axiom ϕ is the number of symbols occurring in
ϕ. The size of an ABox is the sum of the lengths
of its assertions. The size of a TBox is the sum of
the lengths of its axioms.

The data complexity class of Horn-RegI is
defined to be the complexity class of the
problem of checking satisfiability of a Horn-RegI

knowledge base 〈R,T ,A〉, measured in the size
of A when assuming that R and T are fixed and
A is a reduced ABox.

Proposition 2. Let KB = 〈R,T ,A〉 be a
Horn-RegI knowledge base.

1. If C is an LHS Horn-RegI concept then
KB |= C(a) iff the Horn-RegI knowledge
base 〈R, T ∪ {C v A}, A∪ {¬A(a)}〉 is
unsatisfiable, where A is a fresh concept
name.

2. KB can be converted in polynomial time
in the sizes of T and A to a Horn-RegI

knowledge base KB′ = 〈R,T ′,A′〉 with
A′ being a reduced ABox such that KB is
satisfiable iff KB′ is satisfiable.

3. KB can be converted in polynomial time in
the size ofT to a Horn-RegI knowledge base
KB′ = 〈R,T ′,A〉 with T ′ being a clausal
Horn-RegI TBox such that KB is satisfiable
iff KB′ is satisfiable.

Proof: The first assertion is clear. For the
second assertion, we start with T ′ := T and
A′ := A and then modify them as follows: for
each C(a) ∈ A′ where C is not a concept name,
replace C(a) in A′ by A(a), where A is a fresh
concept name, and add to T ′ the axiom A v C.
It is easy to check that the resulting Horn-RegI

knowledge base KB′ = 〈R,T ′,A′〉 is satisfiable
iff KB is satisfiable.

For the third assertion, we apply the technique
that replaces complex concepts by fresh concept
names. For example, if ∀∃R.C v ∃S .D is
an axiom of T , where C and D are complex
concepts, then we replace it by axioms C v AC ,
∀∃R.AC v ∃S .AD and AD v D, where AC and AD

are fresh concept names. C

Corollary 3. Every Horn-RegI knowledge base
KB = 〈R,T ,A〉 can be converted in polynomial
time in the sizes of T and A to a clausal
Horn-RegI knowledge base KB′ = 〈R,T ′,A′〉

such that KB is satisfiable iff KB′ is satisfiable.
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Proof: This corollary follows from the
second and third assertions of Proposition 2.
In particular, we first apply the conversion
mentioned in the second assertion of
Proposition 2 to KB to obtain KB2, and then
apply the conversion mentioned in the third
assertion of Proposition 2 to KB2 to obtain KB′. C

4. Checking Satisfiability of Horn-RegI

Knowledge Bases

In this section we present an algorithm that,
given a clausal Horn-RegI knowledge base
〈R,T ,A〉 together with the RIA-automaton-
specification A of R, checks whether the
knowledge base is satisfiable. The algorithm has
PTime data complexity.

We will treat each TBox axiom C v D from
T as a concept standing for a global assumption.
That is, C v D is logically equivalent to ¬C t D,
and it is a global assumption for an interpretation
I if (¬C t D)I = ∆I.

Let X be a set of concepts. The saturation of
X (w.r.t. A and T ), denoted by Satr(X), is defined
to be the least extension of X such that:

1. if ∀R.C ∈ Satr(X) then [AR]C ∈ Satr(X),
2. if [A]C ∈ Satr(X) and qA ∈ FA then C ∈

Satr(X),
3. if ∀∃R.A occurs in T for some A then

[AR]∃R.> ∈ Satr(X),
4. if A ∈ Satr(X) and ∃R.A occurs at the left

hand side of v in some clause of T then
[AR]〈AR〉A ∈ Satr(X).

Notice the third item in the above list. It
is used for dealing with non-seriality and the
concept constructor ∀∃R.A. Another treatment
for the problem of non-seriality and ∀∃R.A is the
step 5 of Function CheckPremise (used in our
algorithm). It will be explained later.

For R ∈ R, the transfer of X through R is

Trans(X,R) = {[Aq]C | [A]C ∈ X and 〈qA,R, q〉 ∈
δA}.

Our algorithm for checking satisfiability
of 〈R,T ,A〉 uses the data structure
〈∆0,∆,Label,Next〉, which is called a Horn-RegI

graph, where:

(∀i) if r(a, b) ∈ A then ExtendLabel(b,Trans(Label(a), r));

(∀) if x is reachable from ∆0 and Next(x,∃R.C) = y then
Next(x, ∃R.C) :=

Find(Label(y) ∪ Satr(Trans(Label(x), R)));

(∀I) if x is reachable from ∆0 and 〈x,R, y〉 ∈ Edges then
ExtendLabel(x,Trans(Label(y), R));

(∃) if x is reachable from ∆0, ∃R.C ∈ Label(x), R ∈ R and
Next(x,∃R.C) is not defined then Next(x, ∃R.C) :=

Find(Satr({C} ∪ Trans(Label(x), R)) ∪ T ′);
(v) if x is reachable from ∆0, (C v D) ∈ Label(x) and

CheckPremise(x,C) then ExtendLabel(x, {D});

Table 1: Expansion rules for Horn-RegI graphs.

Function Find(X)

1 if there exists z ∈ ∆ \∆0 with Label(z) = X then
2 return z
3 else
4 add a new element z to ∆ with Label(z) := X;
5 return z

Procedure ExtendLabel(z,X)

1 if X ⊆ Label(z) then return;
2 if z ∈ ∆0 then Label(z) := Label(z) ∪ Satr(X)
3 else
4 z∗ := Find(Label(z) ∪ Satr(X));
5 foreach y, R, C such that Next(y,∃R.C) = z do
6 Next(y,∃R.C) := z∗

Function CheckPremise(x,C)

1 if C = > then return true
2 else let C = C1 u . . . u Ck;
3 foreach 1 ≤ i ≤ k do
4 if Ci = A and A /∈ Label(x) then return false
5 else if Ci = ∀∃R.A and (∃R.> /∈ Label(x) or

Next(x,∃R.>) is not defined or
A /∈ Label(Next(x,∃R.>))) then

6 return false
7 else if Ci = ∃R.A and 〈AR〉A /∈ Label(x) then
8 return false

9 return true

Algorithm 1: checking satisfiability in Horn-RegI

Input: a clausal Horn-RegI knowledge base 〈R, T ,A〉
and the RIA-automaton-specification A of R.

Output: true if 〈R, T ,A〉 is satisfiable,
or false otherwise.

1 let ∆0 be the set of all individuals occurring in A;
2 if ∆0 = ∅ then ∆0 := {τ};
3 ∆ := ∆0, T ′ := Satr(T ), empty the mapping Next ;
4 foreach a ∈ ∆0 do
5 Label(a) := Satr({A | A(a) ∈ A}) ∪ T ′

6 while some rule in Table 1 can make changes do
7 choose such a rule and execute it;

// any strategy can be used

8 if there exists x ∈ ∆ such that ⊥ ∈ Label(x) then
9 return false

10 return true

1
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• ∆0 : the set of all individual names occurring
inA,

• ∆ : a set of objects including ∆0,

• Label : a function mapping each x ∈ ∆ to a
set of concepts,

• Next : ∆×{∃R.>,∃R.A | R ∈ R, A ∈ C} → ∆

is a partial mapping.

For x ∈ ∆, Label(x) is called the label of x. A fact
Next(x,∃R.C) = y means that ∃R.C ∈ Label(x),
C ∈ Label(y), and ∃R.C is “realized” at x by
going to y. When defined, Next(x,∃R.>) denotes
the “logically smallest R-successor of x”.

Define

Edges = {〈x,R, y〉 | R(x, y) ∈ A or
Next(x,∃R.C) = y for some C}.

We say that x ∈ ∆ is reachable from ∆0 if
there exist x0, . . . , xk ∈ ∆ and elements R1, . . . ,Rk

of R such that k ≥ 0, x0 ∈ ∆0, xk = x and
〈xi−1,Ri, xi〉 ∈ Edges for all 1 ≤ i ≤ k.

Algorithm 1 attempts to construct a model of
〈R,T ,A〉 by initializing a Horn-RegI graph and
then expanding it by the rules in Table 1. The
intended model extends A with disjoint trees
rooted at the named individuals occurring in A.
The trees may be infinite. However, we represent
such a semi-forest as a graph with global caching:
if two nodes that are not named individuals occur
in a tree or in different trees and have the same
label, then they should be merged. In other
words, for every finite set X of concepts, the
graph contains at most one node z ∈ ∆ \ ∆0 such
that Label(z) = X. The function Find(X) returns
such a node z if it exists, or creates such a node z
otherwise. A tuple 〈x,R, y〉 ∈ Edges represents an
edge 〈x, y〉 with label R of the graph. The notions
of predecessor and successor are defined as usual.

For each x ∈ ∆, Label(x) is a set of
requirements to be “realized” at x. To realize
such requirements at nodes, sometimes we have
to extend their labels. Suppose we want to extend
the label of z ∈ ∆ with a set X of concepts.
Consider the following cases:

• Case z ∈ ∆0 (i.e., z is a named individual
occurring inA): as z is “fixed” by the ABox
A, we have no choice but to extend Label(z)
directly with Satr(X).

• Case z < ∆0 and the requirements X are
directly caused by z itself or its successors:
if we directly extend the label of z (with
Satr(X)) then z will possibly have the same
label as another node not belonging to ∆0
and global caching is not fulfilled. Hence,
we “simulate” changing the label of z by
using z∗ := Find(Label(z) ∪ Satr(X)) for
playing the role of z. In particular, for each
y, R and C such that Next(y,∃R.C) = z, we
set Next(y,∃R.C) := z∗.

Extending the label of z for the above two cases is
done by Procedure ExtendLabel(z, X). The third
case is considered below.

Suppose that Next(x,∃R.C) = y. Then, to
realize the requirements at x, the label of y should
be extended with X = Satr(Trans(Label(x),R)).
How can we realize such an extension? Recall
that we intend to construct a forest-like model
for 〈R,T ,A〉, but use global caching to
guarantee termination. There may exist another
Next(x′,∃R′.C′) = y with x′ , x. That is, we may
use y as a successor for two different nodes x and
x′, but the intention is to put x and x′ into disjoint
trees. If we directly modify the label of y to
realize the requirements of x, such a modification
may affect x′. The solution is to delete the edge
〈x,R, y〉 and reconnect x to y∗ := Find(Label(y)∪
X) by setting Next(x,∃R.C) := y∗. The extension
is formally realized by the expansion rule (∀) (in
Table 1).

Consider the other expansion rules (in Table 1):

• (∀i): If r(a, b) ∈ A then we extend Label(b)
with Satr(Trans(Label(a),R)).

• (∀I): If 〈x,R, y〉 ∈ Edges then we
extend the label of x with Trans(Label(y),R)
by using the procedure ExtendLabel

discussed earlier.

• (∃): If ∃R.C ∈ Label(x) and Next(x,∃R.C)
is not defined yet then to realize the
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requirement ∃R.C at x we connect x
via R to a node with label X =

Satr({C}∪Trans(Label(x),R)∪T ) by setting
Next(x,∃R.C) := Find(X).

• (v): If (C v D) ∈ Label(x) and C
“holds” at x then we extend the label
of x with {D} by using the procedure
ExtendLabel discussed earlier. Suppose
C = C1 u . . . uCk. How to check whether C
“holds” at x? It “holds” at x if Ci “holds” at
x for each 1 ≤ i ≤ k. There are the following
cases:

– Case Ci = A : Ci “holds” at x if A ∈
Label(x).

– Case Ci = ∀∃R.A : Ci “holds” at
x if both ∀R.A and ∃R.> “hold” at
x. If ∃R.> “holds” at x by the
evidence of a path connecting x to
a node z with (forward or backward)
“edges” labeled by S 1, . . . , S k such
that the word S 1 . . . S k is accepted by
the automaton A = AR, that is:

∗ there exist nodes x0, . . . , xk such
that x0 = x, xk = z and, for
1 ≤ j ≤ k, either 〈x j−1, S j, x j〉 ∈

Edges or 〈x j, S j, x j−1〉 ∈ Edges,
∗ there exist states q0, . . . , qk of A

such that q0 = qA, qk ∈ QA and,
for 1 ≤ j ≤ k, 〈q j−1, S j, q j〉 ∈ δA,

then, with A = AR, we have that:

∗ since Label(z) is saturated,
[AR]∃R.> ∈ Label(z), i.e.
[Aqk ]∃R.> ∈ Label(xk),

∗ by the rules (∀i), (∀) and (∀I)
(listed in Table 1 and used in
Algorithm 1), for each j from
k − 1 to 0, we can expect that
[Aq j]∃R.> ∈ Label(x j),

∗ consequently, since q0 = qA ∈

QA, due to the saturation we can
expect that ∃R.> ∈ Label(x0).

That is, we can expect that ∃R.> ∈
Label(x) and Next(x,∃R.>) is defined.
To check whether Ci “holds” at x we

just check whether ∃R.> ∈ Label(x),
Next(x,∃R.>) is defined and A ∈

Label(Next(x,∃R.>)). The intuition is
that, y = Next(x,∃R.>) is the “least R-
successor” of x, and if A ∈ Label(y)
then A will occur in all R-successors
of x.

– Case Ci = ∃R.A : If ∃R.A “holds” at x
by the evidence of a path connecting x
to a node z with (forward or backward)
“edges” labeled by S 1, . . . , S k such
that the word S 1 . . . S k is accepted by
AR and A ∈ Label(z) then, since
[AR]〈AR〉A is included in Label(z) by
saturation, we can expect that 〈AR〉A ∈
Label(x). To check whether Ci = ∃R.A
“holds” at x, we just check whether
〈AR〉A ∈ Label(x). (Semantically,
〈AR〉A is equivalent to ∃R.A.) The
reason for using this technique is due
to the use of global caching (in order
to guarantee termination).

We do global caching to represent a possibly
infinite semi-forest by a finite graph possibly
with cycles. As a side effect, direct checking
“realization” of existential automaton-modal
operators is not safe. Furthermore, we cannot
allow universal modal operators to “run” along
such cycles. “Running” universal modal
operators backward along an edge is safe, but
“running” universal modal operators forward
along an edge is done using a special technique,
which may replace the edge by another one as
in the rule (∀) (specified in Table 1). Formally,
checking whether the premise C of a Horn-RegI

clause C v D “holds” at x is done by
Function CheckPremise(x,C).

Expansions by modifying the label of a node
and/or setting the mapping Next are done only
for nodes that are reachable from ∆0. Note that,
when a node z is simulated by z∗ as in Procedure
ExtendLabel, the node z becomes unreachable
from ∆0. We do not delete such nodes z because
they may be reused later.

When some x ∈ ∆ has Label(x) containing
⊥, Algorithm 1 returns false, which means that
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the knowledge base 〈R,T ,A〉 is unsatisfiable.
When the graph cannot be expanded any more,
the algorithm terminates in the normal mode with
result true, which means 〈R,T ,A〉 is satisfiable.

Theorem 4. Algorithm 1 correctly checks
satisfiability of clausal Horn-RegI knowledge
bases and has PTime data complexity.

This theorem follows from Lemmas 6, 7 and
Corollary 9, which are given and proved in the
next section. The following corollary follows
from this theorem and Proposition 2.

Corollary 5. The problem of checking
satisfiability of Horn-RegI knowledge bases
has PTime data complexity.

Example 3. Let R+ = {r}, C = {A, B, C, D, E},
I = {a, b}, R = {r ◦ r v r, r ◦ r v r}, and let T be
the TBox consisting of the following axioms:

A v ∃r.C (1)

C v ∀r.D (2)

D v C (3)

A u ∀∃r.C v E (4)

A u ∃r.B v E (5)

E v ⊥. (6)

As discussed in Example 1, R is a regular
RBox with the following RIA-automaton-
specification:

Ar = 〈R, {0, 1, 2}, 0, {〈0, r, 1〉, 〈0, r, 2〉, 〈2, r, 2〉,
〈2, r, 2〉, 〈2, r, 1〉}, {1}〉

Ar = 〈R, {0, 1, 2}, 0, {〈0, r, 1〉, 〈0, r, 2〉, 〈2, r, 2〉,
〈2, r, 2〉, 〈2, r, 1〉}, {1}〉.

Note that Ar = (Ar)0 and Ar = (Ar)0.
Consider the Horn-RegI knowledge base KB =

〈R,T ,A〉 withA = {A(a), B(a), A(b), r(a, b)}.
Figure 1 illustrates the Horn-RegI graph

constructed by Algorithm 1 for KB. The nodes of
the graph are a, b, u, u′, v, v′, where ∆0 = {a, b}.
In each node, we display the concepts of the label
of the node. The main steps of the run of the
algorithm are numbered from 0 to 13. In the table
representing a node x ∈ {a, b}, the number in the
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Fig. 1. An illustration for Example 3.

left cell in a row denotes the step at which the
concepts in the right cell were added to the label
of the node. For a node not belonging to ∆0 =

{a, b}, the number before the name of the node
denotes the step at which the node was created.
A label n : ∃r.ϕ displayed for an edge from a
node x to a node y means that Next(x,∃r.ϕ) = y
and the edge was created at the step n. A label
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n : deleted beside a dashed edge means that the
edge was deleted at the step n.

The steps of running Algorithm 1 for KB are as
follows:

0: Initialization.
1: Applying the expansion rule (v) to the node

x = a using the clause (1).
2: Applying (v) to x = b using the clause (1).
3: Applying (∀I) to the nodes x = a and y = b.
4: Applying (∀i) to the nodes a and b.
5: Applying (∃) to x = a and the concept ∃r.C.
6: Applying (∃) to x = b and the concept ∃r.C.
7: Applying (v) to x = u using the clause (2).
8: Applying (∀I) to the nodes x = a and y = u′.
9: Applying (∀I) to the nodes x = b and y = u′.

10: Applying (∃) to x = a and the concept ∃r.>.
11: Applying (v) to x = v using the clause (3).
12: Applying (v) to x = a using the clause (4).
13: Applying (v) to x = a using the clause (6).

Since ⊥ was added to Label(a), Algorithm 1
returns false, and by Corollary 9, the knowledge
base KB is unsatisfiable.

5. Proofs

Define closureA(T ) to be the smallest set of
formulas such that:

• concepts and subconcepts occurring in T
belong to closureA(T ),

• subconcepts occurring in closureA(T ) also
belong to closureA(T ),

• if ∀R.C ∈ closureA(T ) then [AR]C ∈

closureA(T ),

• if [A]C ∈ closureA(T ) and q ∈ QA

then [Aq]C ∈ closureA(T ),

• {[AR]∃R.> | R ∈ R} ⊆ closureA(T ),

• if A ∈ closureA(T ) and R ∈ R
then [AR]〈AR〉A ∈ closureA(T ).

Observe that closureA(T ) is finite.

Lemma 6. Algorithm 1 runs in polynomial time
in the size ofA (when assuming that R and T are
fixed).

Proof: We will refer to the data structures
used in Algorithm 1. Let n be the size of A.
Since R and T are fixed, the size of closureA(T )
is bounded by a constant. Observe that, for x ∈
∆ \ ∆0, Label(x) ⊆ closureA(T ), and for a ∈ ∆0,
Label(a) \ {A | A(a) ∈ A} ⊆ closureA(T ). Hence
the sizes of these two sets are also bounded by
a constant. Since each x ∈ ∆ \ ∆0 has a unique
Label(x) ⊆ closureA(T ), the set ∆ \ ∆0 contains
only O(1) elements. Hence, the size of ∆ is of
rank O(n). Observe that:

• function Find(X) for X ⊆ closureA(T ) runs
in constant time,

• procedure CheckPremise(x,C) runs in
O(n) steps (C does not depend onA),

• procedure ExtendLabel(z, X) runs in O(n)
steps for X ⊆ closureA(T ),

• each iteration of the “while” loop in
Algorithm 1 runs in O(n2) steps.

An iteration of the “while” loop in Algorithm 1
makes changes only when some of the following
occur:

1. Label(a) for some a ∈ ∆0 is extended by
a subset of closureA(T ),

2. a new node x is added into ∆,
3. some Next(x,∃R.C) is defined the first time

to be some y ∈ ∆ \ ∆0,
4. some Next(x,∃R.C) changes value from y to

some y∗ ∈ ∆ \∆0 with Label(y) ( Label(y∗).

As the sizes of closureA(T ), ∆ \ ∆0 and Label(y)
for y ∈ ∆ \ ∆0 are bounded by a constant,
the “while” loop in Algorithm 1 executes only
O(n) iterations. Therefore, the “while” loop in
Algorithm 1 and hence the whole Algorithm 1 run
in time O(n3). C

Lemma 7. If Algorithm 1 returns true then the
knowledge base 〈R,T ,A〉 is satisfiable.
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Proof: Suppose Algorithm 1 returns true for
〈R,T ,A〉. We will refer to the data structures
used by that run of Algorithm 1. A model for
〈R,T ,A〉will be constructed by starting from ∆0,
then unfolding the remaining part of the graph
constructed by Algorithm 1, and then completing
the interpretation of roles R ∈ R. For that
we define ∆′ and Edges′ as counter parts of ∆

and Edges, respectively, together with a mapping
f : ∆′ → ∆ and a queue unresolved of elements
of ∆′ as follows:

• ∆′ := ∆0;

• Edges′ := {〈a, r, b〉 | r(a, b) ∈ A};

• for each a ∈ ∆0, f (a) := a;

• add the elements of ∆0 into unresolved;

• while unresolved is not empty:

– extract an element u from unresolved;
– for each ∃R.C and each y such that

Next( f (u),∃R.C) = y :
∗ add a new element v into ∆′ and

unresolved;
∗ f (v) := y;
∗ add 〈u,R, v〉 to Edges′.

The resulting data structures can be infinite.
Let I be the interpretation with ∆I = ∆′,
specified by:

• for each A ∈ C, AI = {u ∈ ∆′ | A ∈
Label( f (u))};

• for all R ∈ R, RI are the least relations
satisfying the following conditions:

– (R
I

)−1 ⊆ RI,
– if 〈u,R, v〉 ∈ Edges′ then 〈u, v〉 ∈ RI,
– for every word S 1 . . . S k accepted by

AR,
S I1 ◦ · · · ◦ S Ik ⊆ RI.

We show that I is a model of 〈R,T ,A〉. For
this it suffices to prove that, for every u ∈ ∆′ and
every ϕ ∈ Label( f (u)), u ∈ ϕI. We prove this by
induction on the structure of ϕ. Let u ∈ ∆′ and
suppose ϕ ∈ Label( f (u)).

• Case ϕ = A is trivial.

• Case ϕ = ∃R.C : Since ϕ ∈ Label( f (u)),
there exists v ∈ ∆I such that 〈u, v〉 ∈ RI and
Next( f (u),∃R.C) = f (v). We have that C ∈
Label( f (v)). By the inductive assumption,
v ∈ CI, and hence u ∈ ϕI.

• Case ϕ = ∀R.A : Let v be any element of
∆I such that 〈u, v〉 ∈ RI. We show that
v ∈ AI. Since 〈u, v〉 ∈ RI, there exist a word
S 1 . . . S k accepted by AR and elements u0 =

u, u1, . . . , uk−1, uk = v such that, for every
1 ≤ i ≤ k, 〈ui−1, ui〉 ∈ S Ii , and 〈ui−1, S i, ui〉 ∈

Edges′ or 〈ui, S i, ui−1〉 ∈ Edges′. Let A =

AR. Since S 1 . . . S k is accepted by A, there
exist states q0 = qA, q1, . . . , qk such that
qk ∈ FA and 〈qi−1, S i, qi〉 ∈ δA for every
1 ≤ i ≤ k. Since ϕ ∈ Label( f (u)) and
ϕ = ∀R.A, by saturation, we have that
[AR]A ∈ Label( f (u)), which means [A]A ∈
Label( f (u)) and [Aq0]A ∈ Label( f (u0)). For
each i from 1 to k, since 〈ui−1, S i, ui〉 ∈

Edges′ or 〈ui, S i, ui−1〉 ∈ Edges′, it follows
that [Aqi]A ∈ Label( f (ui)). Since qk ∈ FA

and uk = v, it follows that A ∈ Label( f (v)).
Hence, by the inductive assumption, v ∈ AI.

• Case ϕ = (C v D) and C = C1 u . . . u Ck :
Suppose u ∈ CI. We prove that u ∈ DI. The
last call CheckPremise( f (u),C) returned
true because the following observations hold
for every 1 ≤ i ≤ k:

– Case Ci = A : Since u ∈ CIi , we have
that A ∈ Label( f (u)).

– Case Ci = ∃R.A : Since u ∈ CIi , there
exist a word S 1 . . . S k accepted by AR

and elements u0 = u, u1, . . . , uk−1, uk

such that uk ∈ AI and, for every
1 ≤ i ≤ k, 〈ui−1, ui〉 ∈ S Ii , and
〈ui−1, S i, ui〉 ∈ Edges′ or 〈ui, S i, ui−1〉 ∈

Edges′. Let A = AR. Since S k . . . S 1
is accepted by A, there exist states
qk = qA, qk−1, . . . , q0 such that q0 ∈ FA

and 〈qi, S i, qi−1〉 ∈ δA for every k ≥
i ≥ 1. Since uk ∈ AI, we have that
A ∈ Label( f (uk)) and, by saturation,
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[AR]〈AR〉A ∈ Label( f (uk)), which
means [Aqk ]〈AR〉A ∈ Label( f (uk)).
For each i from k to 1, since
〈ui, S i, ui−1〉 ∈ Edges′ or 〈ui−1, S i, ui〉 ∈

Edges′, it follows that [Aqi−1]〈AR〉A ∈
Label( f (ui−1)). Since q0 ∈ FA and
u0 = u, it follows that 〈AR〉A ∈

Label( f (u)).

– Case Ci = ∀∃R.A : Since u ∈ CIi ,
we have that u ∈ (∀R.A)I and u ∈
(∃R.>)I. Thus, there exist a word
S 1 . . . S k accepted by AR and elements
u0 = u, u1, . . . , uk−1, uk such that, for
every 1 ≤ i ≤ k, 〈ui−1, ui〉 ∈

S Ii , and 〈ui−1, S i, ui〉 ∈ Edges′ or
〈ui, S i, ui−1〉 ∈ Edges′. Let A = AR.
Since S k . . . S 1 is accepted by A, there
exist states qk = qA, qk−1, . . . , q0 such
that q0 ∈ FA and 〈qi, S i, qi−1〉 ∈ δA

for every k ≥ i ≥ 1. By saturation,
[AR]∃R.> ∈ Label( f (uk)), which
means [Aqk ]∃R.> ∈ Label( f (uk)).
For each i from k to 1, since
〈ui, S i, ui−1〉 ∈ Edges′ or 〈ui−1, S i, ui〉 ∈

Edges′, it follows that [Aqi−1]∃R.> ∈
Label( f (ui−1)). Since q0 ∈ FA

and u0 = u, it follows that
∃R.> ∈ Label( f (u)). Therefore,
Next( f (u),∃R.>) is defined and there
exists v′ ∈ ∆I with f (v′) =

Next( f (u),∃R.>). We have that
〈u, v′〉 ∈ RI. Since u ∈ (∀R.A)I,
it follows that v′ ∈ AI and hence
A ∈ Label( f (v′)), which means A ∈
Label(Next( f (u),∃R.>)).

We have shown that
CheckPremise( f (u),C) returned true.
It follows that D ∈ Label( f (u)), and by the
inductive assumption, u ∈ DI. C

Given an interpretation I, for ϕ = (C v

D), define ϕI = (¬C t D)I, and for a set X
consisting of concepts and TBox axioms, define
XI =

⋂
{ϕI | ϕ ∈ X}.

As Algorithm 1 tries to derive ⊥ at some node
of the constructed graph, Lemma 7 given above is

in fact an assertion about the completeness of the
procedure. It remains to show the soundness: if
⊥ is added to Label(x) for some x ∈ ∆ (which
causes the algorithm to return false), then the
knowledge base KB = 〈R,T ,A〉 is unsatisfiable.
It is sufficient to show that every change made
to the graph constructed by Algorithm 1 is
“justifiable”. An informal justification for this
has been given in the discussion about the
algorithm. For a formal justification, we consider
the contrapositive assertion: if KB is satisfiable
then Algorithm 1 returns true for it. By assuming
that KB is satisfiable and using any fixed model
I of KB, every change made to the constructed
graph can be justified by I. In particular, ⊥
cannot be added to the label of any node of
the graph. This is formalized by the following
lemma.

Lemma 8. Let KB = 〈R,T ,A〉 be a clausal
Horn-RegI knowledge base. Suppose KB is
satisfiable and I is a model of KB. Consider an
execution of Algorithm 1 for KB and any moment
after executing the step 7 of that execution. Let
r = {〈x, u〉 ∈ ∆ × ∆I | u ∈ (Label(x))I}. Then:

1. for every a ∈ I occurring in A, r(a, aI)
holds;

2. for every x, y ∈ ∆, u, v ∈ ∆I and ∃R.C
such that Next(x,∃R.C) = y, if r(x, u) holds,
RI(u, v) holds and v ∈ CI, then r(y, v) holds;

3. for every x ∈ ∆, there exists u ∈ ∆I such that
r(x, u) holds.

Note that if r(x, u) holds then u ∈ (Label(x))I,
which means Label(x) is satisfied at (and hence
“justified by”) u in I. The second assertion of
the lemma implies that if Next(x,∃R.>) = y,
r(x, u) and RI(u, v) hold then r(y, v) holds. The
first two assertions of this lemma can be proved
by induction on the number of executed steps in
a way similar to the proof of [24, Lemma 3.5].
The last assertion follows from the previous ones,
because every x ∈ ∆ is/was at some step reachable
from ∆0 and Label(x) was never changed.

Corollary 9. If KB = 〈R,T ,A〉 is a satisfiable
clausal Horn-RegI knowledge base then
Algorithm 1 returns true for it.
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Proof sketch: By the last assertion of
Lemma 8, ⊥ was never added to Label(x) for
any x ∈ ∆. This means that Algorithm 1 does
not return false. As it always terminates (by
Lemma 6), it must return true. C

6. Conclusions and Future Work

We have explained our technique of dealing
with non-seriality that leads to a solution for
the important issue of allowing the concept
constructor ∀∃R.C to appear at the left hand
side of v in terminological inclusion axioms.
We have developed an algorithm with PTime
data complexity for checking satisfiability of
Horn-RegI knowledge bases. This shows that
both Horn-Reg and Horn-RegI have PTime data
complexity, solving an open problem of [12].

Recently, in [26] we have introduced Horn-DL
as a generalization of Horn-RegI that still has
PTime data complexity. The full manuscript
on Horn-DL [27] is to be improved and not
published yet. As future work, we intend to
develop efficient methods for evaluating queries
to Horn-RegI and Horn-DL knowledge bases. As
Horn-RegI is a restricted version of Horn-DL, we
expect to have more optimization techniques for
query evaluation in Horn-RegI .
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