
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45

Original Article

An Adaptive and High Coding Rate Soft Error Correction
Method in Network-on-Chips

Khanh N. Dang∗, Xuan-Tu Tran
VNU Key Laboratory for Smart Integrated Systems, VNU University of Engineering and Technology,

144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Received 28 September 2018
Revised 05 March 2019; Accepted 15 March 2019

Abstract: The soft error rates per single-bit due to alpha particles in sub-micron technology is expectedly reduced
as the feature size is shrinking. On the other hand, the complexity and density of integrated systems are accelerating
which demand efficient soft error protection mechanisms, especially for on-chip communication. Using soft error
protection method has to satisfy tight requirements for the area and energy consumption, therefore a low complexity
and low redundancy coding method is necessary. In this work, we propose a method to enhance Parity Product
Code (PPC) and provide adaptation methods for this code. First, PPC is improved as forward error correcting using
transposable retransmissions. Then, to adapt with different error rates, an augmented algorithm for configuring PPC
is introduced. The evaluation results show that the proposed mechanism has coding rates similar to Parity check’s
and outperforms the original PPC.

Keywords: Error Correction Code, Fault-Tolerance, Network-on-Chip.

1. Introduction

Electronics devices in critical applications
such as medical, military, aerospace may expose
to several sources of soft errors (alpha particles,
cosmic rays or neutrons). The most common
behavior is to change the logic value of a gate or
a memory cell leading to incorrect values/results.
Since those critical applications demand high

∗ Corresponding author.
Email address: khanh.n.dang@vnu.edu.vn

https://doi.org/10.25073/2588-1086/vnucsce.218

reliability and availability due to the difficulty
in maintenance, soft error resilience is widely
considered as a must-have feature among them.
However, according to [1], the soft error rate
(SER) per gates is predictively reduced due to
the shrinking of transistor size. Previously,
the soft error rates of single-bit are predictively
decreased by around 2 times per technology
generation [2]. With the realistic analyses in 3D
technology [3], the reduction is continue with
small transistor sizes, 3D structure and the top
layers act as shielding layers. Empirical results
of 14nm FinFET devices show that the soft error

32

K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45 33

FIT (Fault In Time) rate is significantly reduced
by 5-10 times from the older technologies.
However, due to the increasing of integration
density, the number of soft errors per chip is
likely to be increased [2]. Moreover, the soft
error rates in normal gates are also rising which
shift the interests of soft error tolerance from
memory-based devices to memory-less devices
(wires, logic gates) [1]. As a consequence,
the communication part needs an appropriate
attention to designing soft error protection to
balance the complexity and reliability.

To protect the wire/gate which plays the
major role in on-chip communication from
soft errors, there are three main approaches
as in Fig. 1: (i) Information Redundancy;
(ii) Temporal Redundancy; and (iii) Spatial
Redundancy. While spatial and temporal
redundancies are costly in terms of performance,
power and area, using error correction code
(ECC) and error detection (ED) is an optimal
solution. Also, ECC with further forward error
correction (FEC) and backward error correction
(BEC) could provide a viable solution with lesser
area cost and lower performance degradation.
By combining a coding technique with detection
feature and retransmission as BEC, the system
can correct more faults. On the other hand,
FEC, which temporally ignores the faults then
corrects them at the final receiver, is another
viable solution. Indeed, ECC plays a key role in
the two mentioned solutions.

Among existing ECCs and EDs, the Parity
check is one of the very first methods to detect
a single flipped bit. It also provides the highest
coding rate and the lowest power consumption.
On the other hand, Hamming code (HM) [4]
and its extension (Single Error Correction
Double Error Detection: SECDED) [5] are
two common techniques. This is due to the
fact that those two ECCs only rely on basic
boolean functions to encode and decode. Thanks

to their low complexity, they are suitable
for on-chip communication applications and
memories [6]. On the other hand, Cyclic
Redundancy Check (CRC) code is also another
solution to detect faults [7]. Since it does not
support fault correction, it may not optimal for
on-chip communication. Further coding methods
such as Bose-Chaudhuri-Hocquenghem and
Reed-Solomon are exceptionally strong in terms
of correctability and detectability; however,
their overwhelming complexities prevent
them from being widely applied in on-chip
communication [7]. Product codes [8, 9], as the
overlap of two or more coding techniques could
also provide a much resilient and flexibility.

As previously mentioned, wires/logic gates
have lower soft error rates than memories.
In addition, Magen et al. [10] also reveals
the interconnect consumes more than 50% the
dynamic power. Since Network-on-Chips utilizes
multiple hopes and FIFO-based design, the area
cost and static power are also problematic.
Therefore, we observe that using a high coding
rate1 ECC could help solve the problem.
Moreover, the low complexity methods can be
widely applied within a high complexity system.
The soft errors on computing modules and
memories are out of scope of this paper.

In this paper, we present an architecture using
Parity Product Code (PPC) to detect and correct
soft errors in on-chip communication. Here, we
combine with both BEC and FEC to enhance the
coding rate and latency. A part of this work has
been published in [11]. In this work, we provide
an analytical analysis for the adaptive method and
provide an augmented algorithm for managing.
The contributions are:

• A selective ARQs in row/column for PPC
using a transposable FIFO design.

1Coding rate: ratio of useful bits per total bits.

34 K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45

Fig. 1. Soft error tolerance approaches.

• A method to adaptively issue the parity flit.

• A method to perform go-back
retransmission under low error rates.

• An adaptive mechanism for the PPC-based
system with various error rates.

The organization of this paper is as follows:
Section 2 reviews the existing literature on
coding techniques and fault-tolerances. Section 3
presents the PPC and Section 4 shows the
proposed architecture. Section 5 provides
evaluations and Section 6 concludes the paper.

2. Related works

As we previously mentioned, the soft error
tolerance is classified into three branches:
(i) Information Redundancy, (ii) Temporal
Redundancy, and (iii) Spatial Redundancy. In this
work, we focus on the on-chip communication;
therefore, this section focuses on the methods
which tolerate soft errors in this type of medium.

For information redundancy, error correction
code is the most common method. Error
correcting code has been developed and
widely applied in the recent decades. Among
the existing coding technique, Hamming
code [4], which is able to detect and correct

one fault, is one of the most common ones.
Its variation with one extra bit - Single Error
Correction Double Error Detection (SECDED)
by Hisao [5] is also common with the ability
to correct and detect one and two faults,
respectively. Thanks to their simplicity, ECC
memories usually use Hamming-based coding
technique [12]. Error detection only codes
such as cyclic redundancy check (CRC) [13]
is also widely used in digital network and
storage applications. More complicated
coding techniques such as Reed-Solomon [14],
BCH [15] or Product-Code [8] could be
alternative ECCs. Further correction of ECC
could be forward (correct at the final terminal) or
backward (demand repair from the transmitter)
error correction. Despite its efficiency, ECC is
limited by its maximum number of fault could be
detected and corrected.

When ECC cannot correct but can detect the
occurrence of faults, temporal redundancy can be
useful. Here, we present four basic methods:
(i) retransmission, (ii) re-execution, (iii) shadow
sampling, and (iv) recovery and roll-back. Both
retransmission [16] and re-execution [17, 18]
share the same idea of repeating the faulty actions
(transmission or execution) in order to obtain
non-faulty actions. Due to the randomness of soft
errors, this type of errors is likely to absent after

K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45 35

a short period. With the similar idea, shadow
sampling (i.e. Razor Flip-Flop [19]) uses a delay
(shadow) clock to sample data into an additional
register. By comparing the original data and
the shadow data, the system can detect the
possible faults. Although temporal redundancy
can be efficient with its simple mechanism, it
can create congestion due to multiple times of
execution/transmission.

Since temporal redundancy may cause
bottle-necks inside the system, using spatial
redundancy can be a solution [17, 20]. One of
the most basic approaches is multiple modular
redundancies. By having two replicas, the
system can detect soft errors. Moreover, using
an odd number of replicas and a voting circuit,
the system can correct soft errors. Since spatial
redundancy is costly in terms of area, applying
them to soft error protection is problematic.

3. Parity product code

This section presents Parity Product Code
(PPC) which is based on Parity check and
Product code [8, 9]. While Parity check has the
lowest complexity and highest coding rate among
existing ECC/EDC, product code provide more
flexibility for correction.

3.1. Encoding of PPC

Let’s assume a packet has M-flits and one
parity flit as follows:

P =

F0
F1
. . .

FM−1
FP

=

b0

0 b0
1 b0

2 . . . p0

b1
0 b1

1 b1
2 . . . p1

b2
0 b2

1 b2
2 . . . p2

. .

pb0 pb1 pb2 . . . ppi

where, a flit F has N data bits and one single
parity bit:

Fi =
[
bi

0 bi
1 bi

2 . . . bi
N−1 pi

]
Followings are the calculations for parity

data:

pi = bi
0 ⊕ bi

1 ⊕ · · · ⊕ bi
N−1 (1)

and
FP = F0 ⊕ F1 ⊕ . . . FM−1

Because the decoding latency is O(M), we
can use a trunk of M flits instead.

3.2. Decoding of PPC

The decoding for PPC could be handled in
two phases: (i) Phase 1: Parity check for flits
with backward error correction; and (ii) Phase
2: forward error correction for packets. For
each receiving flit, parity check is used to decide
whether a single event upset (SEU) occurs:

CF = b0 ⊕ b1 ⊕ · · · ⊕ bN−1 ⊕ p (2)

If there is a SEU, CF will be ‘1’. To quickly
correct the flit, Hybrid Automatic Retransmission
Request (HARQ) could be used for demanding
a retransmission. Because HARQ may cause
congestions in the transmission, we correct using
the PPC correction method at the RX (act as
FEC). In our previous work [11], we use the
Razor-Flip Flop with Parity. However, the area
and power overhead of this method are costly.
Therefore, using pure FEC is desired in this
method. The algorithm of decoding process is
shown in Algorithm 1.

If the fault cannot be corrected, the system
correct it at the receiving terminals. Parity check
of the whole packet is defined as:

CP = F0 ⊕ F1 ⊕ · · · ⊕ FM−1 ⊕ FP (3)

36 K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45

Fig. 2. Single flipped bit and its detection pattern.

Base on the values of CF and CP, the decoder
can find out the index of the fault as in Fig. 2.
The flit-parity and the index parity check of the
flipped bit have the CF = CP = 1. Therefore, the
decoder can correct the bit by flipping it during
the reading process. Note that the FIFO has to
be deep enough for M flits (M ≤ FIFO’s depth).
Apparently, PPC can detect and correct only a
single flipped bit in M flits.

4. Proposed architecture and algorithm

4.1. Fault assumption

In this work, we mainly target to low error
rates where there is one flipped bit in a packet (or
group of flits). According to [21], the expected
soft error rate (SER) for SRAM is below 103

FIT/Mbit (10−3 FIT/bit) for planar, FDSOI and
FinFET2. Furthermore, SER could reach 6E6

2FIT: Failures In Time is the number of failures that can be
expected in one billion (109) device-hours of operation.

FIT/Mbit in the worst case (14-nm bulk, 10-15km
of attitude). Since the FIT is calculated for 109

hours, we can observe the realistic error rate per
clock cycle is low.

Algorithm 1: Decoding Algorithm.
// Input code word flits

Input: Fi = {bi
0, . . . b

i
N−1, p}

// Output code word flits

Output: oFi
// Output packet/group of flits

Output: oFi
// Output ARQ

Output: ARQ
// Calculate the parity check

1 CF = bi
0 ⊕ · · · ⊕ bi

N−1 ⊕ p
2 S EU′F = b′i0 ⊕ · · · ⊕ b′iN−1 ⊕ p′

// Correct SEUs by using RFF-w-P

3 if (CF == 0) then
// The original code word is correct

4 oFi = Fi

5 else
6 if (ARQ == True) then

// Using ARQ

7 else
// Using FEC

8 oFi = Fi;
9 oCF = 1;

10 if (RX = True) then
// Forward Error Correction Code using

PPC

11 call FEC();
12 else
13 return oFi;

Figure 3 shows the evaluation of different
bit error rate with the theoritical model and
Monte-Carlo simulation (10,000 cases). This
evaluation is based on Eq. 4 where ε is the bit
error rate, Pi,n is the probability of having i faults
in n bits. Note that we only calculate for zero
and one fault since the two-bit error rates are
extremely low. Even having two-bit error, our
technique still can detect and correct thank to the
transposable selective ARQ.

Pi,n =

(
n
i

)
∗ εi ∗ (1 − ε)n−i (4)

K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45 37

���� ���� ���� ���� ����
	���
����������ε

���

���

���

���

���

���

��
��

��
����

�

����������������������
����������������������

����������������������
����������������������

�������������������������
�������������������������

�������������������������
�������������������������

Fig. 3. Flit and packet error rate: theoretical model and Monte-Carlo simulation results. Flit size: 64-bit, packet size: 4-flits.

In summary, we analyze that BER in on-chip
communication is low enough that the ECC
methods such as SECDED or Hamming is
overwhelmed. Providing an optimized coding
mechanism could help reducing the area and
power overhead. Understanding the potential
high error rate is also necessary.

4.2. Transposable selective ARQ

4.2.1. Problem definition
If there are two flipped bits inside the same

flit, the parity check fails to detect. On the other
hand, detected faulty flits may not be corrected by
using HARQ due to the fact that the flit is already
corrupted at the sender’s FIFO. Here, we classify
errors into two types: HARQ correctable errors
and HARQ uncorrectable errors. In both cases,
the system relies on the correctability of PPC at
the receiving terminal.

4.2.2. Proposed method
As a FEC, PPC can calculate parity check

of each bit-index as in CP. Therefore, we can

further detect it by Eq. 3. If a flit has an odd
number of flipped bits, a selective ARQ can help
fix the data. On the other hand, if a flit has
an even number of flipped bits, the CF stays at
zeros. Therefore, the decoder cannot determine
the corrupted flits. However, CP could indicate
the failed indexes. Note that PPC is unable to
detect the square positional faults (i.e.: faults with
indexes (a,b), (c,b), (a,d) and (c,d)).

To correct these cases, the system use three
stages: (i) Row (bit-index) Selective ARQ,
(ii) Column (flit-index) Selective ARQ and
(iii) Go-back-N (N: number of flits) ARQ. A
go-back-N ARQ demands a replica of the whole
trunk of flits (or packet) while the selective one
only requests the corrupted one.

The column ARQ is a conventional method
where the failed flit index is sent to TX. For
the row ARQ, the bit index is sent instead.
For instance if b2

1 and b2
2 are flipped leading to

undetected SEU in F2. By calculating the CP, the
receiver finds out that bit-index 1 and bit-index

38 K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45

2 have flipped bits; therefore, we can use the
H-ARQs to retransmit these flits:

FARQ1 =

b0

1
b1

1
. . .

pb1

and

FARQ2 =

b0

2
b1

2
. . .

pb2

In this work, we assume that the maximum

flipped bits in a flit is two. Therefore, the decoder
aims to mainly use row ARQs because it cannot
find out which flit has two flipped bits. The
FEC and Selective ARQ algorithm is illustrated
in Algorithm 2.

Algorithm 2: Forward Error
Correction and Selective ARQ
Algorithm.

// Input code word flits

Input: Fi = {bi
0, . . . b

i
N−1, p}

// Output code word flits

Output: oFi
// Output ARQ

Output: ARQ

1 if i == 0 then
2 CP = Fi;
3 regCF = CF

4 else if i < M − 1 then
5 CP = CP ⊕ Fi;
6 regCF = {regCF ,CF };
7 else
8 if no or single SEU then
9 P = Mask (Fi,CP, regCF);

10 return P;
11 else
12 ARQ = CP;

// receive new flits (i ≥ N) and

write in row indexes

13 Fi=0,...,N−1 = write_row (CP, F(i≥N))

4.3. Adaptive algorithm

4.3.1. Problem definition
If the error rate is low enough to cause single

flipped bit in a packet, using parity flit could cost
considerable power and reduce the coding rate.
Therefore, we try to optimize this type of cases.

4.3.2. Adaptive FP

PPC can perform adaptive parity flit (FP)
issuing. In this case, the receiver will check the
parity of each flit as usual using Parity check.
If the parity check fails, it first tries to correct
using HARQ. If both techniques cannot correct
the fault, receiver will send to TX a signal to
request the parity flit. The parity flit is issued
for each M flits as usual. If there is no fail in
the parity check process, the parity flit could be
removed from the transmission.

The adaptive FP could increase the coding
rate by removing the FP; however, the major
drawback is that it cannot detect two errors in the
same flit.

4.3.3. Overflowing packet check
Moreover, we can extend further with a

go-back retransmission instead of transposable
ARQ. Assuming the maximum number of cached
flits is K. Since FP can be responsible
M > K flits, the correction provide by PPC is
impossible and the system needs a go-back M
flits retransmission. By adjusting the M value, the
system can switch between go-back M-flits and
PPC correction. This could be applied for low
error rate cases to enhance the coding rate. The
Overflowing Packet Check (OPC) could adjust
the M value based on the error rate.

4.3.4. Augmented algorithm
Apparently, the original PPC, adaptive FP

and OPC are suitable for a specified error rate.
To help the on-chip communication system adapt
with different rates, we proposed a lightweight
mechanism to monitor and adjust the proposal.
We define three dedicated modes:

K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45 39

Algorithm 3: Augmented Algorithm
for PPC.

// Input: result of decoding

Input: CF , CP
// Output: modes

Output: Mode
// Output: M

Output: M
1 switch Mode do
2 case Mode-1 do
3 if

∑
CP == 0 and

∑
CF == 0 then

4 M=M*2;
5 else
6 M=M/2;
7 if M == K then
8 Mode = Mode-2;

9 case Mode-2 do
10 if

∑
CP == 0 and

∑
CF == 0 then

11 Mode = Mode-1;
12 else if

∑
CP >= 2 or

∑
CF >= 2 then

13 Mode = Mode-3;

14 case Mode-3 do
15 if

∑
CP <= 1 and

∑
CF <= 1 then

16 Mode = Mode-2;
17 else

// Need to inform the system

• Mode-1: Adaptive FP with OPC. The FP is
issued adaptively; however, after M flits, an
FP is issued to ensure the correctness of M
flits.

• Mode-2: PPC standalone. Constant check
the flits and packets using PPC.

• Mode-3: High error rates. The PPC decoder
recognizes there are more than two faults in
a packet then informs the system the high
error rates situation.

Algorithm 3 shows the augmented algorithm
for PPC. For each mode, the system adjusts the
coding mechanism based on the output of the
decoder. If there is no error detected (CP == 0
and CF == 0), it could switch to a higher coding
rate method. Also, inside the Mode-1, the system
adjusts the M value to enhance the coding rate.

If there are multiple errors, the system needs
to enhance the coding mechanism (i.e. reduce
M value or use the original PPC). Here, we
assume that both terminals have a synchronize
mechanism that allows them to adjust the coding
mechanism on both sides.

4.4. Proposed architecture

4.4.1. Encoding and decoding scheme
Figure 4 shows the architecture for the PPC

encoding and decoding scheme. In the encoder’s
side, the FIFO receives data until being full.
Then, the encoder transmits data through the
channel with a parity bit (p) which is obtained
from the ‘FLIT PAR’ module. On the other
hand, each flit is also brought into a packet parity
encoder (PACK. PAR) to obtain parity flit (FP).
This parity check flit is transmitted at the end of
the packet.

At each hop of the communication, the parity
check of each flit is performed. If there is
a flipped bit, this module can correct using a
shadow clock or ARQ.

When the flit arrives the decoder, it is checked
and corrected by HARQ first. Once the flit is
done, it is pushed into the FIFO and the ‘PACK.
PAR’ module. After completing the parity value
of the packet, it was sent to the controller
to handle the masking process. The masking
process can correct a single flipped bit; therefore,
selective ARQ is used once there are 2+ faults are
detected. As we previously assumed, when there
are two faults in a flit, the CP value can indicate
the faulty indexes. This value will be sent back to
the encoder to retransmit those indexes.

4.4.2. Transposable FIFO
To support reading and writing in both

column and row (as row/column ARQ), we
use a transposable FIFO (T-FIFO) architecture.
Besides the normal jobs of a FIFO, it also allows
randomly reading and writing by a column or row

40 K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45

Fig. 4. PPC scheme: Parity Product Code for soft error correction.

address (which means transposable FIFO). For a
bigger size, RAM-based FIFO may be utilized.
A transposable SRAM [22] could be usedwith 8
transistors instead of 6 as in the traditional ones.
In this work, we use a DFF-based T-FIFO.

5. Evaluation

5.1. Methodology

The architecture has been designed in Verilog
HDL and synthesized using NANGATE 45 nm
library. The design is then implemented using
EDA tools provided by Synopsys. Because of the
fault assumption (two faults per a group of flits),
we compare the architecture to Parity check,
Hamming and SECDED which are the common
soft error correction methods, especially for low
error rates.

5.2. Coding performance

In this section, we perform evaluation of
coding rates for PPC and existing high coding
rate methods (Parity, Hamming, SECDED). For
a fair comparison, we only consider the coding
rate at the maximum detecting and correcting

capability of the methods.
5.2.1. Parity product code
Figure 5 shows the coding rate of PPC

without any enhancement. The coding rate of
PPC is obtained as [NM]/[(N + 1)(M + 1)]. As
we can observe in this figure, PPCs with M > 10
has a better coding rate than both of HM and
SECDED. For larger numbers of data bit-width
(60+), HM and SECDED have better coding rates
due to the fact that the parity check flit FP heavily
affects the overall rate. Also, smaller M values
also degrade the coding rate significantly. On the
other hand, Parity code outperforms the others
due to the fact that it only needs one extra bit. The
major drawback of Parity is lack of correctability.

0 20 40 60 80 100 120
Data's Width (N bit)

0.5

0.6

0.7

0.8

0.9

1.0

C
od

in
g
R
at
e

PPC(M=4)
PPC(M=8)
PPC(M=12)
PPC(M=16)

PPC(M=20)
Parity
Hamming
SECDED

Fig. 5. Coding rates of PPC.

K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45 41

5.2.2. Adaptive FP

We first evaluate the efficiency of using
adaptive FP. The results are shown in Fig. 6. The
packet size is set to 4 flits and the data’s width is
varied from 2 to 120.

Fig. 6(a) shows the case of BER=10−3, in
which PPC’s coding rate is reduced rapidly when
increasing the data’s width to be lower than both
Hamming and SECDED. However, if the data’s
width is lower than 64-bit, PPC still outperforms
both of them. Furthermore, PAR+ARQ has
lower coding rate than ARQ (no-fault). Fig. 6(b)
shows the case of BER=10−4. In this case, PPC
easily dominates both Hamming and SECDED
and has a similar performance as Parity check. In
comparison with the original PPC, the adaptive
FP provides an exceptional better performance,
especially with no or low error rate. Please note
that even we consider 10−4 as a low error rate, this
rate is still higher than the BER we discussed in
Section 4.1 where the worst case is around 6×106

FIT/Mbit ('6 FIT/bit: 6 errors/bit/109 hours).
If the BER is reduced further to 10−5, the

coding rate of adaptive FP is mostly identical to
parity check.

5.2.3. Overflowing packet check
In this section, we evaluate how efficient the

overflowing packet (OPC) check could be. For
this evaluation, we set the buffer size is 4 while
the numbers of flits for parity in the overflowing
packet check are 8, 16, 32, and 64.

With high error rates (10−3 and 10−4), we can
observe the drop of coding rate in long packets.
This is because the required retransmissions are
occasionally needed. If the error rate drops to
10−5, the coding rate is significantly better. With
M=64, the coding rate is slightly lower than the
Parity check which means that it is still lower than
the adaptive FP.

5.2.4. Summary
Figure 8 compares the proposed techniques.

In summary, adaptive FP offers the best coding

rate among the proposed techniques. However,
this method has one drawback, it can only
detect and correct one flipped bit in the whole
packet. The OPC version has lower coding
rate, but it can detect and correct more. In
order to understand the overall reliability, we
investigate the reliability of these methods in the
next section.

5.3. Reliability

Although coding rate could be a good
measurement of the efficiency of the existing
coding methods and the proposal, the reliability
is also an important parameter. Reliability is
defined as the probability of working without any
failure. In this section, we consider soft errors
are independent. Therefore, the probability of
having i errors in n bits is as Eq. 4. In this
case, the time to failure is calculated based on
the occurrence of having i errors which are over
the detection/correction threshold of the system.
For each system, we assume the maximum error
could be handled is e. Therefore, the reliability
function R could be calculated as:

R = P(i ≤ e) (5)

=

e∑
i=0

((
n
i

)
× εi × (1 − ε)n−i

)
(6)

Figure 9 shows the reliability results of those
methods. We first consider HARQ correctable
errors then the HARQ uncorrectable errors. With
HARQ correctable errors, the OPC and PPC
benefit from the ability to correct using HARQ.
The adaptive FP is unable to use this which leads
to degradation in terms of reliability.

Without considering the HARQ correctable
errors, we can observe the drop of OPC version
which becomes lower than the original PPC.
However, it is still higher than adaptive FP.

Figure 10 shows high error rate cases.

42 K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45

� 	�
� �� �� ��� �	�
�!.!�-��'#.&����bit�

���

���

��

���

���

���

�
*#

')
%�

�
!.

$

�!���'.�$,,*,�,!.$��10−3�

������
� 0�*�$,,*,
������
��!#!+.'/$�FP

�������

��������0��
�!((')%
������

� 	�
� �� �� ��� �	�
�!.!�-��'#.&����bit�

���

���

��

���

���

���

�
*#

')
%�

�
!.

$

�"���'.�$,,*,�,!.$��10−4�

������
� 0�*�$,,*,
������
��!#!+.'/$�FP

�������

���� 0�*�$,,*,
�!((')%
������

� 	�
� �� �� ��� �	�
�!.!�-��'#.&����bit�

���

���

��

���

���

���

�
*#

')
%�

�
!.

$

�"���'.�$,,*,�,!.$��10−5�

������
� 0�*�$,,*,
������
��!#!+.'/$�FP

�������

���� 0�*�$,,*,
�!((')%
������

Fig. 6. Coding rates evaluation of adaptive FP with three BERs.

� ��
� �� �� ��� ���
�!-!�,��'#-&����bit�

���

���

��

���

���

���

�
*#

')
%�

�
!-

$

�!���'-�$++*+�+!-$��10−3�

������
�� .�*�$++*+
������������
�������������
������	������
�������
�����

�������
���� .�*�$++*+
�!((')%
������

� ��
� �� �� ��� ���
�!-!�,��'#-&����bit�

���

���

��

���

���

���

�
*#

')
%�

�
!-

$

�"���'-�$++*+�+!-$��10−4�

������
�� .�*�$++*+
������������
�������������
������	������
�������
�����

�������
���� .�*�$++*+
�!((')%
������

� ��
� �� �� ��� ���
�!-!�,��'#-&����bit�

���

���

��

���

���

���

�
*#

')
%�

�
!-

$

�"���'-�$++*+�+!-$��10−5�

������
�� .�*�$++*+
������������
�������������
������	������
�������
�����

�������
���� .�*�$++*+
�!((')%
������

Fig. 7. Coding rates evaluation of Overflowing Packet Check with three BERs.

� �� 	� �� � ��� ���
��'��&��!�' ����bit�

���

����

���

���

��

����

���

�
#�

!"
��
�
�'
�

�����!'��%%#%�%�'���10−4�

�����������$'!(��FP

�������������
�������	�����
�������������
������	������
������	�����
������
������
�������	�����

� �� 	� �� � ��� ���
��'��&��!�' ����bit�

���

����

���

���

��

����

���

����

�
#�

!"
��
�
�'
�

�����!'��%%#%�%�'���10−6�

�����������$'!(��FP

�������������
�������	�����
�������������
������	������
������	�����
������
������
�������	�����

� �� 	� �� � ��� ���
��'��&��!�' ����bit�

���

����

���

���

��

����

���

����

�
#�

!"
��
�
�'
�

�����!'��%%#%�%�'���10−8�

�����������$'!(��FP

�������������
�������	�����
�������������

������	������
������	�����
������
������
�������	�����

Fig. 8. Comparison of coding rate between the proposed techniques.

K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45 43

Table 1. Hardware complexity results of the proposal with 32-bitwidth

Design Module Sub-module Area (µm2) (%) Power (µW) (%) Max Freq. (MHz)
Parity-based 33-bit, 4-slots 1111.8800 562.4571 -

FIFO Hamming-based 39-bit, 4-slots 1300.2080 664.5005 -
SECDED-based 40-bit, 4-slots 1331.3300 683.0590 -

Hamming Encoder 94.1640 68.8886 2,570.69
Decoder 234.8780 206.0509 1,369.86

SECDED Encoder 111.7200 82.3979 2,564.10
Decoder 253.7640 206.3793 1,250.00

PARITY
Encoder 49.4760 49.3382 2,666.67
Decoder 51.0720 52.4233 2,380.95

Ours

TX

Total 1856.4140 (100) 823.2660 (100) 1,273.88
Controller 344.4700 (18.6) 167.7900 (20.4) -
Encoder 366.8140 (19.8) 123.1230 (15) -
T-FIFO (32-bit) 1098.8460 (59.2) 529.6990 (64.3) -

RX

Total 2107.2520 (100) 958.899 (100) 1,270.64
Controller 495.2920 (23.5) 196.242 (20.5) -
Mask 78.2040 (3.7) 4.066 (0.4) -
Decoder 303.7720 (14.4) 189.536 (19.8)
T-FIFO (33-bit) 1142.2040 (54.2) 518.098 (54.0) -

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010
Bit Error Rate

0.00014

0.00012

0.00010

0.00008

0.00006

0.00004

0.00002

0.00000

R
el

ia
bi

lit
y

+1

(a) Reliability with HARQ correctable error.

Prob. healthy of ARQ
Prob. healthy of PPC

Prob. healthy of PPC with adaptive FP

Prob. healthy of PPC with OPC (M=4×K)

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010
Bit Error Rate

0.00014

0.00012

0.00010

0.00008

0.00006

0.00004

0.00002

0.00000

R
el

ia
bi

lit
y

+1

(b) Reliability with HARQ uncorrectable error.

Prob. healthy of ARQ
Prob. healthy of PPC

Prob. healthy of PPC with adaptive FP

Prob. healthy of PPC with OPC (M=4×K)

Fig. 9. Reliability comparison under low BER.

0.000 0.002 0.004 0.006 0.008 0.010
Bit Error Rate

0.6

0.7

0.8

0.9

1.0

R
el

ia
bi

lit
y

(a) Reliability with HARQ correctable error.

Prob. healthy of ARQ
Prob. healthy of PPC

Prob. healthy of PPC with adaptive FP

Prob. healthy of PPC with OPC (M=4×K)

0.000 0.002 0.004 0.006 0.008 0.010
Bit Error Rate

0.2

0.4

0.6

0.8

1.0

R
el

ia
bi

lit
y

(b) Reliability with HARQ uncorrectable error.

Prob. healthy of ARQ
Prob. healthy of PPC

Prob. healthy of PPC with adaptive FP

Prob. healthy of PPC with OPC (M=4×K)

Fig. 10. Reliability comparison under high BER.

44 K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45

Apparently, the reliability is significantly
dropped because the evaluated mechanisms
are not supposed to correct multiple faults.
We can observe the drop of OPC with HARQ
uncorrectable error and the resilience of Parity.
However, all of the evaluated methods offer low
reliability in HARQ uncorrectable error case
which makes them unusable.

5.4. Implementation results

In order to understand the hardware
complexity of the proposed model and the
other coding techniques, we implemented them
with 32 data bit-width. Table 1 presents in details
the hardware cost of PPC’s parity modules and
the sub-modules. We use NANGATE 45 nm
library [23] and set the frequency as 500MHz for
the power estimation.

As we can observe, the area cost of the PPC’s
encoder and decoder is less than 20% of the TX
and RX in both area and power consumption.
Most of the cost belong to the memory-based
module. For instance, FIFO occupies 59.2% and
54.2% of TX’s and RX’s area cost. Although
the complexity of encoder and decoder seems
higher than other, the area cost of the FIFO can
be reduced thanks to the smaller bit-width.

In comparison to three common coding
techniques (Parity, Hamming and SECDED),
the encoder and decoder both cost more area
and power. This is because the codec requires
register for calculating the CP. The area cost
and power consumption of PPC’s FIFO are
smaller than Hamming’s and SECDED’s due to
the smaller bit-width. However, this overhead
only impacts the multi-hop architectures such as
Network-on-Chips.

Design of T-FIFO also has smaller area
overhead in comparison to normal FIFOs. With
33 data bit-width, T-FIFO increases the area and
power by 2.7% and 6.8%, respectively. This area

is total reasonable as it provides the ability to read
and write in both column and row.

6. Conclusion

In this paper, we present PPC as an error
correction code and its hardware extensions for
detecting and correcting soft errors in on-chip
communications. A transposable FIFO is also
presented to help the system retransmission
by both row and column indexes. Adaptive
mechanism for low error rate can help increase
the coding rate of the system. Although they
significantly increase the area cost, they provide
one bit detect and protection with only necessity
to check the parity of the data. The coding rate
is also promising with better than Hamming and
SECDED with large packet sizes. Also, PPC can
detect more faults to inform the system.

In the future, we design of PPC with
Parity could be implemented in a specific
Network-on-Chip to investigate the impacts on
the performance.

Acknowledgments

This work has been supported by VNU
University of Engineering and Technology under
Project No. CN18.10.

The preliminary part of this work was
published in [11]. The authors thank colleagues
for their helpful discussions and proofreading.
Khanh N. Dang would like give a special thank
to VNU journal team for encouraging to improve
his skills in editing their style of LATEXto match
their new template.

K.N. Dang, X.-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 32–45 45

References

[1] R. Baumann, Radiation-induced soft errors in
advanced semiconductor technologies, IEEE
Transactions on Device and materials reliability
5 (3) (2005) 305–316. https://doi.org/10.1109/tdmr.
2005.853449.

[2] N. Seifert, B. Gill, K. Foley, P. Relangi, Multi-cell
upset probabilities of 45nm high-k + metal gate
SRAM devices in terrestrial and space environments,
in: IEEE International Reliability Physics Symposium
2008, IEEE, AZ, USA, 2008, pp. 181–186.

[3] S. Lee, I. Kim, S. Ha, C.-s. Yu, J. Noh, S. Pae, J. Park,
Radiation-induced soft error rate analyses for 14 nm
FinFET SRAM devices, in: 2015 IEEE International
Reliability Physics Symposium (IRPS), IEEE, CA,
USA, 2015, pp. 4B–1.

[4] R. Hamming, Error detecting and error correcting
codes, Bell Labs Tech. J. 29 (2) (1950) 147–160. https:
//www.doi.org/10.1002/j.1538-7305.1950.tb00463.x.

[5] M.-Y. Hsiao, A class of optimal minimum
odd-weight-column SEC-DED codes, IBM
J. Res. Dev. 14 (4) (1970) 395–401. https:
//www.doi.org/10.1147/rd.144.0395.

[6] S. Mittal, M. Inukonda, A survey of techniques
for improving error-resilience of dram, Journal of
Systems Architecture 91 (1) (2018) 11–40. https://
www.doi.org/10.1016/j.sysarc.2018.09.004.

[7] D. Bertozzi, et al., Error control schemes for on-chip
communication links: the energy-reliability tradeoff,
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 24 (6) (2005)
818–831. https://doi.org/10.1109/tcad.2005.847907.

[8] F. Chiaraluce, R. Garello, Extended Hamming product
codes analytical performance evaluation for low error
rate applications, IEEE Transactions on Wireless
Communications 3 (6) (2004) 2353–2361. https://doi.
org/10.1109/twc.2004.837405.

[9] R. Pyndiah, Near-optimum decoding of product
codes: Block turbo codes, IEEE Transactions on
Communications 46 (8) (1998) 1003–1010. https://
www.doi.org/10.1109/26.705396.

[10] N. Magen, A. Kolodny, U. Weiser, N. Shamir,
Interconnect-power dissipation in a microprocessor,
in: Proceedings of the 2004 international workshop
on System level interconnect prediction, ACM, Paris,
France, 2004, pp. 7–13.

[11] K. Dang, X.-T. Tran, Parity-based ECC and
Mechanism for Detecting and Correcting Soft
Errors in On-Chip Communication, in: Proceeding
of 2018 IEEE 11th International Symposium on

Embedded Multicore/Many-core Systems-on-Chip
(MCSoC-2018), IEEE, Hanoi, Vietnam, 2018, pp.
1–6.

[12] L.-J. Saiz-Adalid, et al., MCU tolerance
in SRAMs through low-redundancy triple
adjacent error correction, IEEE Transactions
on VLSI Systems 23 (10) (2015) 2332–2336.
https://www.doi.org/10.1109/tvlsi.2014.2357476.

[13] W. Peterson, D. Brown, Cyclic codes for error
detection, Proceedings of the IRE 49 (1) (1961)
228–235. https://www.doi.org/10.1109/jrproc.1961.
287814.

[14] S. Wicker, V. Bhargava, Reed-Solomon Codes and
Their Applications, first ed., John Wiley & Sons, NJ,
USA, 1999.

[15] I. Reed, X. Chen, Error-control coding for data
networks, first ed., Springer Science & Business
Media, New York, 2012.

[16] L. Peterson, B. Davie, Computer networks: a systems
approach, fifth ed., Elsevier, New York, 2011.

[17] K. Dang, et al., Soft-error resilient 3D
Network-on-Chip router, in: 2015 IEEE 7th
International Conference on Awareness Science
and Technology (iCAST), China, 2015, pp. 84–90.

[18] K. Dang, et al., A low-overhead soft–hard
fault-tolerant architecture, design and management
scheme for reliable high-performance many-core
3D-NoC systems, The Journal of Supercomputing
73 (6) (2017) 2705–2729. https://www.doi.org/10.
1007/s11227-016-1951-0.

[19] D. Ernst, et al., Razor: A low-power pipeline based on
circuit-level timing speculation, in: Proceedings of the
36th annual IEEE/ACM International Symposium on
Microarchitecture, Vol. 24, IEEE, CA, USA, 2003, pp.
10–20.

[20] H. Mohammed, W. Flayyih, F. Rokhani, Tolerating
permanent faults in the input port of the network on
chip router, Journal of Low Power Electronics and
Applications 9 (1) (2019) 1–11. https://www.doi.org/

10.3390/jlpea9010011.
[21] G. Hubert, L. Artola, D. Regis, Impact of scaling on

the soft error sensitivity of bulk, FDSOI and FinFET
technologies due to atmospheric radiation, Integration,
the VLSI journal 50 (2015) 39–47. https://www.doi.
org/10.1016/j.vlsi.2015.01.003.

[22] J.-s. Seo, et al., A 45nm cmos neuromorphic chip
with a scalable architecture for learning in networks
of spiking neurons, in: 2011 IEEE Custom Integrated
Circuits Conference (CICC), IEEE, CA, USA, 2011,
pp. 1–4.

[23] NanGate Inc., Nangate Open Cell Library 45 nm.
http://www.nangate.com, (accessed 16.06.16) (2016).

https://doi.org/10.1109/tdmr.2005.853449
https://doi.org/10.1109/tdmr.2005.853449
https://doi.org/10.1109/tdmr.2005.853449
https://doi.org/10.1109/tdmr.2005.853449
https://www.doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://www.doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://www.doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://www.doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://www.doi.org/10.1147/rd.144.0395
https://www.doi.org/10.1147/rd.144.0395
https://www.doi.org/10.1147/rd.144.0395
https://www.doi.org/10.1147/rd.144.0395
https://www.doi.org/10.1016/j.sysarc.2018.09.004
https://www.doi.org/10.1016/j.sysarc.2018.09.004
https://www.doi.org/10.1016/j.sysarc.2018.09.004
https://www.doi.org/10.1016/j.sysarc.2018.09.004
https://doi.org/10.1109/tcad.2005.847907
https://doi.org/10.1109/tcad.2005.847907
https://doi.org/10.1109/tcad.2005.847907
https://doi.org/10.1109/twc.2004.837405
https://doi.org/10.1109/twc.2004.837405
https://doi.org/10.1109/twc.2004.837405
https://doi.org/10.1109/twc.2004.837405
https://doi.org/10.1109/twc.2004.837405
https://www.doi.org/10.1109/26.705396
https://www.doi.org/10.1109/26.705396
https://www.doi.org/10.1109/26.705396
https://www.doi.org/10.1109/26.705396
https://www.doi.org/10.1109/tvlsi.2014.2357476
https://www.doi.org/10.1109/tvlsi.2014.2357476
https://www.doi.org/10.1109/tvlsi.2014.2357476
https://www.doi.org/10.1109/tvlsi.2014.2357476
https://www.doi.org/10.1109/jrproc.1961.287814
https://www.doi.org/10.1109/jrproc.1961.287814
https://www.doi.org/10.1109/jrproc.1961.287814
https://www.doi.org/10.1109/jrproc.1961.287814
https://www.doi.org/10.1007/s11227-016-1951-0
https://www.doi.org/10.1007/s11227-016-1951-0
https://www.doi.org/10.1007/s11227-016-1951-0
https://www.doi.org/10.1007/s11227-016-1951-0
https://www.doi.org/10.1007/s11227-016-1951-0
https://www.doi.org/10.1007/s11227-016-1951-0
https://www.doi.org/10.3390/jlpea9010011
https://www.doi.org/10.3390/jlpea9010011
https://www.doi.org/10.3390/jlpea9010011
https://www.doi.org/10.3390/jlpea9010011
https://www.doi.org/10.3390/jlpea9010011
https://www.doi.org/10.1016/j.vlsi.2015.01.003
https://www.doi.org/10.1016/j.vlsi.2015.01.003
https://www.doi.org/10.1016/j.vlsi.2015.01.003
https://www.doi.org/10.1016/j.vlsi.2015.01.003
https://www.doi.org/10.1016/j.vlsi.2015.01.003

	Introduction
	Related works
	Parity product code
	Encoding of PPC
	Decoding of PPC

	Proposed architecture and algorithm
	Fault assumption
	Transposable selective ARQ
	Problem definition
	Proposed method

	Adaptive algorithm
	Problem definition
	Adaptive FP
	Overflowing packet check
	Augmented algorithm

	Proposed architecture
	Encoding and decoding scheme
	Transposable FIFO

	Evaluation
	Methodology
	Coding performance
	Parity product code
	Adaptive FP
	Overflowing packet check
	Summary

	Reliability
	Implementation results

	Conclusion

